149 research outputs found

    Fraudulent Conveyances—Necessity of Judgment to Set Aside

    Get PDF
    Fraudulent Conveyances—Necessity of Judgment to Set Asid

    Fraudulent Conveyances—Necessity of Judgment to Set Aside

    Get PDF
    Fraudulent Conveyances—Necessity of Judgment to Set Asid

    An Association of Multiple Well Differentiated Liposarcomas, Lipomatous Tissue and Hereditary Retinoblastoma

    Get PDF
    Well differentiated liposarcoma (atypical lipomatous tumour) is a low grade tumour, with no metastatic potential unless dedifferentiation supervenes. When superficial, it recurs locally only occasionally after marginal excision. We present a patient in whom bilateral childhood retinoblastoma was followed by later development of massive confluent areas of low grade liposarcoma and lipomatous tissue affecting the upper extremities and trunk. We discuss the role of mutations in the retinoblastoma gene (RB1) in linking these conditions and demonstrate the surgical management of an extremely unusual and challenging case

    Enhanced M1 Macrophage Polarization in Human Helicobacter pylori-Associated Atrophic Gastritis and in Vaccinated Mice

    Get PDF
    Background: Infection with Helicobacter pylori triggers a chronic gastric inflammation that can progress to atrophy and gastric adenocarcinoma. Polarization of macrophages is a characteristic of both cancer and infection, and may promote progression or resolution of disease. However, the role of macrophages and their polarization during H. pylori infection has not been well defined. Methodology/Principal Findings: By using a mouse model of infection and gastric biopsies from 29 individuals, we have analyzed macrophage recruitment and polarization during H. pylori infection by flow cytometry and real-time PCR. We found a sequential recruitment of neutrophils, eosinophils and macrophages to the gastric mucosa of infected mice. Gene expression analysis of stomach tissue and sorted macrophages revealed that gastric macrophages were polarized to M1 after H. pylori infection, and this process was substantially accelerated by prior vaccination. Human H. pylori infection was characterized by a mixed M1/M2 polarization of macrophages. However, in H. pylori-associated atrophic gastritis, the expression of inducible nitric oxide synthase was markedly increased compared to uncomplicated gastritis, indicative of an enhanced M1 macrophage polarization in this pre-malignant lesion. Conclusions/Significance: These results show that vaccination of mice against H. pylori amplifies M1 polarization of gastric macrophages, and that a similar enhanced M1 polarization is present in human H. pylori-induced atrophic gastritis

    One-Step Preservation of Phosphoproteins and Tissue Morphology at Room Temperature for Diagnostic and Research Specimens

    Get PDF
    BACKGROUND: There is an urgent need to measure phosphorylated cell signaling proteins in cancer tissue for the individualization of molecular targeted kinase inhibitor therapy. However, phosphoproteins fluctuate rapidly following tissue procurement. Snap-freezing preserves phosphoproteins, but is unavailable in most clinics and compromises diagnostic morphology. Formalin fixation preserves tissue histomorphology, but penetrates tissue slowly, and is unsuitable for stabilizing phosphoproteins. We originated and evaluated a novel one-step biomarker and histology preservative (BHP) chemistry that stabilizes signaling protein phosphorylation and retains formalin-like tissue histomorphology with equivalent immunohistochemistry in a single paraffin block. RESULTS: Total protein yield extracted from BHP-fixed, routine paraffin-embedded mouse liver was 100% compared to snap-frozen tissue. The abundance of 14 phosphorylated proteins was found to be stable over extended fixation times in BHP fixed paraffin embedded human colon mucosa. Compared to matched snap-frozen tissue, 8 phosphoproteins were equally preserved in mouse liver, while AMPKβ1 Ser108 was slightly elevated after BHP fixation. More than 25 tissues from mouse, cat and human specimens were evaluated for preservation of histomorphology. Selected tissues were evaluated in a multi-site, independent pathology review. Tissue fixed with BHP showed equivalent preservation of cytoplasmic and membrane cytomorphology, with significantly better nuclear chromatin preservation by BHP compared to formalin. Immunohistochemical staining of 13 non-phosphorylated proteins, including estrogen receptor alpha, progesterone receptor, Ki-67 and Her2, was equal to or stronger in BHP compared to formalin. BHP demonstrated significantly improved immunohistochemical detection of phosphorylated proteins ERK Thr202/Tyr204, GSK3-α/β Ser21/Ser9, p38-MAPK Thr180/Tyr182, eIF4G Ser1108 and Acetyl-CoA Carboxylase Ser79. CONCLUSION: In a single paraffin block BHP preserved the phosphorylation state of several signaling proteins at a level comparable to snap-freezing, while maintaining the full diagnostic immunohistochemical and histomorphologic detail of formalin fixation. This new tissue fixative has the potential to greatly facilitate personalized medicine, biobanking, and phospho-proteomic research

    Control of Oxo-Group Functionalization and Reduction of the Uranyl Ion

    Get PDF
    yesUranyl complexes of a large, compartmental N8-macrocycle adopt a rigid, “Pacman” geometry that stabilizes the UV oxidation state and promotes chemistry at a single uranyl oxo-group. We present here new and straightforward routes to singly reduced and oxo-silylated uranyl Pacman complexes and propose mechanisms that account for the product formation, and the byproduct distributions that are formed using alternative reagents. Uranyl(VI) Pacman complexes in which one oxo-group is functionalized by a single metal cation are activated toward single-electron reduction. As such, the addition of a second equivalent of a Lewis acidic metal complex such as MgN″2 (N″ = N(SiMe3)2) forms a uranyl(V) complex in which both oxo-groups are Mg functionalized as a result of Mg−N bond homolysis. In contrast, reactions with the less Lewis acidic complex [Zn(N″)Cl] favor the formation of weaker U−O−Zn dative interactions, leading to reductive silylation of the uranyl oxo-group in preference to metalation. Spectroscopic, crystallographic, and computational analysis of these reactions and of oxo-metalated products isolated by other routes have allowed us to propose mechanisms that account for pathways to metalation or silylation of the exo-oxogroup

    The Separation of 241

    Full text link
    Electrical power sources used in outer planet missions are a key enabling technology for data acquisition and communications. State–of-the-art power sources generate electricity from alpha decay of 238Pu via thermoelectric conversion. However, production of 238Pu requires specialist facilities including a nuclear reactor, a source of 237Np for target irradiation and hotcells to chemically separate neptunium and plutonium within the irradiated targets. These specialist facilities are expensive to build and operate, so naturally, a more economical alternative is attractive to the industry. Within Europe 241Am is considered a promising alternative heat source for radioisotope thermoelectric generators (RTGs) and radioisotope heating units (RHUs). As a daughter product of 241Pu decay, 241Am exists in 1000 kgs quantities within the UK civil plutonium stockpile. A chemical separation process is required to extract the 241Am in a pure form and this paper describes the AMPPEX process (Americium and Plutonium Purification by Extraction), successfully developed over the past five years to isolate 241Am in high yield (> 99%) and to a high purity (> 99%). The process starts by dissolving plutonium dioxide in nitric acid with the aid of a silver(II) catalyst, which is generated electrochemically. The solution is then conditioned and fed to a PUREX type solvent extraction process, where the plutonium is separated from the americium and silver. The plutonium is converted back to plutonium dioxide and the americium is fed forward to a second solvent extraction step. Here the americium is selectively extracted leaving the silver in the aqueous phase. The americium is stripped from the solvent and recovered from solution as americium oxalate, which is calcined to give americium dioxide as the final product. This paper will describe the development of the separation process over a series of six solvent extraction separation trials using centrifugal contactors. The material produced (~ 4g 241Am) was used to make ceramic pellets to establish the behaviour of americium oxide material under high temperature (1450°C) sintering conditions. The chemical separation process is now demonstrated at concentrations expected on the full scale facility taking this process to TRL 4-5
    corecore