830 research outputs found

    The emerging roles of deubiquitylating enzymes (DUBs) in the TGFβ and BMP pathways

    Get PDF
    The members of the transforming growth factor beta (TGFß) family of cytokines, including bone morphogenetic proteins (BMP), play fundamental roles in development and tissue homeostasis. Hence, aberrant TGFß/BMP signalling is associated with several human diseases such as fibrosis, bone and immune disorders, cancer progression and metastasis. Consequently, targeting TGFß signalling for intervention potentially offers therapeutic opportunities against these diseases. Many investigations have focussed on understanding the molecular mechanisms underpinning the regulation of TGFß signalling. One of the key areas has been to investigate the regulation of the protein components of the TGFß/BMP signal transduction pathways by ubiquitylation and deubiquitylation. In the last 15years, extensive research has led to the discovery and characterisation of several E3 ubiquitin ligases that influence the TGFß pathway. However, the research on DUBs regulating the TGFß pathway has received prominence only recently and is still an emerging field. This review will provide a concise summary of our current understanding of how DUBs regulate TGFß signalling

    Low-cost quantification of greenhouse gas emissions in smallholder agro-ecosystem: a comparative analysis of methods

    Get PDF
    Quantification of greenhouse gas (GHG) exchanges between agricultural field and the atmosphere is essential for understanding the contribution of various production systems to the total emissions, develop mitigation options and policies, raise awareness and encourage adoption. But, GHG quantification from smallholder agricultural landscape is challenging primarily because of the heterogeneity of production systems. Various methods have been developed over years to quantify GHG fluxes between agricultural ecosystem and atmosphere. In this paper, we reviewed and analysed the common methods with regard to their scale and precision of quantification, cost effectiveness, prospects and limitations focusing mainly on smallholder production systems. As most of the quantification methods depend on ground data and due to data deficit for smallholder systems, field measurement must be an essential part of GHG emission inventories under such systems. Chamber-based method is a principal approach for field level quantification under smallholder production system mainly because of its cost effectiveness, portability and adoptability under diverse field conditions. However, direct measurement of GHG for all mosaics of smallholder production landscape is impractical and therefore use of models becomes imperative. Here, selection of suitable models and their rigorous parameterization, calibration and validation under various production environments are necessary in order to obtain meaningful emission estimation. After proper validation, linking dynamic ecosystem models to geographic information system (GIS) helps estimating GHG emission within reasonable time and cost. Integration of different approaches such as chamber-based measurement to generate field data, simulation modelling by using empirical as well as process-based models coupled with use of satellite imagery may provide a robust estimate of GHGs emission than use of a single approach

    Protein associated with SMAD1 (PAWS1/FAM83G) is a substrate for type I bone morphogenetic protein receptors and modulates bone morphogenetic protein signalling

    Get PDF
    Bone morphogenetic proteins (BMPs) control multiple cellular processes in embryos and adult tissues. BMPs signal through the activation of type I BMP receptor kinases, which then phosphorylate SMADs 1/5/8. In the canonical pathway, this triggers the association of these SMADs with SMAD4 and their translocation to the nucleus, where they regulate gene expression. BMPs can also signal independently of SMAD4, but this pathway is poorly understood. Here, we report the discovery and characterization of PAWS1/FAM83G as a novel SMAD1 interactor. PAWS1 forms a complex with SMAD1 in a SMAD4-independent manner, and BMP signalling induces the phosphorylation of PAWS1 through BMPR1A. The phosphorylation of PAWS1 in response to BMP is essential for activation of the SMAD4-independent BMP target genes NEDD9 and ASNS. Our findings identify PAWS1 as the first non-SMAD substrate for type I BMP receptor kinases and as a novel player in the BMP pathway. We also demonstrate that PAWS1 regulates the expression of several non-BMP target genes, suggesting roles for PAWS1 beyond the BMP pathway

    Change detection in visual short-term memory: the relative impact of pairwise switches and identity substitutions

    Get PDF
    Numerous kinds of visual events challenge our ability to keep track of objects that populate our visual environment from moment to moment. These include blinks, occlusion, shifting visual attention and changes to object’s visual and spatial properties over time. These visual events may lead to objects falling out of our visual awareness but can also lead to unnoticed changes, such as undetected object replacements and positional exchanges. Current visual memory models do not predict which visual changes are likely to be the most difficult to detect. We examined the accuracy with which switches (where two objects exchange locations) and substitutions (where one or two objects are replaced) are detected. Inferior performance for one-object substitutions vs. two-objects switches, along with superior performance for two-object substitutions vs. two-object switches was found. Our results are interpreted in terms of object file theory, trade-offs between diffused and localized attention, and net visual change
    • …
    corecore