
                                                              

University of Dundee

The specificities of small molecule inhibitors of the TGF beta and BMP pathways

Vogt, Janis; Traynor, Ryan; Sapkota, Gopal P.

Published in:
Cellular Signalling

DOI:
10.1016/j.cellsig.2011.06.019

Publication date:
2011

Document Version
Peer reviewed version

Link to publication in Discovery Research Portal

Citation for published version (APA):
Vogt, J., Traynor, R., & Sapkota, G. P. (2011). The specificities of small molecule inhibitors of the TGF beta and
BMP pathways. Cellular Signalling, 23(11), 1831-1842. 10.1016/j.cellsig.2011.06.019

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

 • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 16. Mar. 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Dundee Online Publications

https://core.ac.uk/display/20453578?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.cellsig.2011.06.019
http://discovery.dundee.ac.uk/portal/en/research/the-specificities-of-small-molecule-inhibitors-of-the-tgf-beta-and-bmp-pathways(8fff5a07-4e6d-4f5f-83a5-f5d8af4fd2a3).html


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 1 

THE SPECIFICITIES OF SMALL MOLECULE INHIBITORS OF 

THE TGFß AND BMP PATHWAYS 

 
Janis Vogt

1
, Ryan Traynor

2
, Gopal P Sapkota

1 

 
1
MRC Protein Phosphorylation Unit, College of Life Sciences, 

2
 Division of Signal 

Transduction Therapy (DSTT), University of Dundee, Dow Street, Dundee, DD1 5EH, 

Scotland, UK. 

Address correspondence to: Dr. Gopal Sapkota, Sir James Black Centre, Dow Street, Dundee, 

DD1 5EH, Scotland, UK; Phone: ++44 (0)1382 386330; Fax: ++44 (0)1382 223778; E-mail: 

g.sapkota@dundee.ac.uk 

 

 

Manuscript
Click here to view linked References

http://ees.elsevier.com/cls/viewRCResults.aspx?pdf=1&docID=3299&rev=1&fileID=71588&msid={A7C7D5ED-E525-490B-B216-CE883845F83E}


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 2 

Abstract 

Small molecule inhibitors of type 1 receptor serine threonine kinases (ALKs1-7), the 

mediators of TGFß and BMP signals, have been employed extensively to assess their 

physiological roles in cells and organisms. While all of these inhibitors have been reported as 

“selective” inhibitors of specific ALKs, extensive specificity tests against a wide array of 

protein kinases have not been performed. In this study, we examine the specificities and 

potencies of the most frequently used small molecule inhibitors of the TGFß pathway (SB-

431542, SB-505124, LY-364947 and A-83-01) and the BMP pathway (Dorsomorphin and 

LDN-193189) against a panel of up to 123 protein kinases covering a broad spectrum of the 

human kinome. We demonstrate that the inhibitors of the TGFß pathway are relatively more 

selective than the inhibitors of the BMP pathway. Based on our specificity and potency profile 

and published data, we recommend SB-505124 as the most suitable molecule for use as an 

inhibitor of ALKs 4, 5 & 7 and the TGFß pathway. We do not recommend Dorsomorphin, 

also called Compound C, for use as an inhibitor of the BMP pathway. Although LDN-193189, 

a Dorsomorphin derivative, is a very potent inhibitor of ALK2/3 and the BMP-pathway, we 

found that it potently inhibited a number of other protein kinases at concentrations sufficient 

to inhibit ALK2/3 and its use as a selective BMP-pathway inhibitor has to be considered 

cautiously. Our observations have highlighted the need for caution when using these small 

molecule inhibitors to assess the physiological roles of BMP and TGFß pathways. 

 

Keywords: TGF-beta, BMP, Kinase, Inhibitors, LDN-193189, SB-505124  

 

Abreviations: ActR-IIA, activin A receptor, type IIA; ActR-IIB, activin A receptor, type IIB; 

ALK, Activin receptor-like kinase; AMH, anti-müllerian hormone; AMHR-II, anti-müllerian 

hormone receptor type II; BMP, bone morphogenetic protein; BMPR-II, bone morphogenetic 

protein receptor type II; GDF, growth differentiation factor; TGFß, transforming growth 

factor-ß; TGFßR-II, transforming growth factor-ß receptor type II. 
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1. Introduction 

 
The signalling pathways downstream of the transforming growth factor beta (TGFß) family of 

cytokines, that comprise some 42 members, control plethora of cellular processes including 

proliferation, differentiation, extra-cellular matrix production, motility, survival and fate [1]. 

Aberrant TGFß signalling pathways are associated with many human diseases, including bone 

diseases, immune-suppression, fibrosis, cancer progression and metastasis [2-7]. Hence 

targeted disruption of specific TGFß signalling components by small molecules or other 

means provides potential therapeutic opportunities. Over the past few years, BMP/TGFß type 

I and type II receptor serine threonine protein kinases, the transducers of BMP and TGFß 

signals, have been targeted for development of small molecule inhibitors. Specific small 

molecule inhibitors of these protein kinases not only provide a flexible, rapid and cost-

effective means of inhibiting their targets in cells and tissues but also potentially could have 

many therapeutic applications. 

 

The TGFß family of ligands is broadly divided into two groups based on their ability to 

trigger the activation of specific Smad transcription factors, the intracellular mediators of 

TGFß signals. The TGFß subfamily (which includes TGFß, Activin and Nodal) activates 

Smads 2 and 3, while the BMP subfamily (which includes BMPs, GDFs and AMH) activates 

Smads 1, 5 and 8 [1]. The ligands exist as homo- or hetero-dimers and bind to specific sets of 

type II and type I receptors, which are serine-threonine protein kinases, and thus result in a 

large ligand-receptor complex involving a ligand dimer, two type II and two type I receptor 

molecules [1, 8]. The formation of ligand-receptor complex facilitates the constitutively 

active type II receptor kinases to phosphorylate and activate the type I receptor kinases [1, 9]. 

In all, there are five type II receptors (ActR-IIA, ActR-IIB, BMPR-II, AMHR-II and TGFßR-

II) and seven type I receptors (also known as Activin-receptor-Like-Kinases: ALKs 1-7). The 

TGFß subfamily of ligands form unique receptor complexes by pairing specific type II 

receptors (TGFßR-II or ActR-IIB) with specific type I (ALK4, ALK5 or ALK7) receptors. 

Similarly the BMP family of ligands construct receptor complexes by pairing specific type II 

receptors (BMPR-II or ActR-IIA/B or AMHR-II) with specific ALKs (ALK1, ALK2, ALK3 

or ALK6) [1, 8]. Once activated ALKs 4, 5 and 7 primarily phosphorylate Smad2 and 3 while 

ALKs 1, 2, 3 and 6 phosphorylate Smads 1, 5, and 8 at the highly conserved C-terminal Ser-

Xxx-Ser motif. This phosphorylation of dual residues, often referred to as tail-

phosphorylation, triggers the binding of Smads to co-Smad4 and their translocation to the 

nucleus. In the nucleus Smad4 and tail-phosphorylated Smads form functional complexes 

with other cofactors and regulatory proteins and regulate the transcription of over 500 genes, 

which control context-specific cellular outcomes [1, 10].  

 

Given the indispensible roles of ALKs in driving the TGFß and BMP pathways, they have 

become attractive targets for the development of small molecule inhibitors to attenuate the 

cellular effects of TGFß and BMP ligands. Among TGFß ligands, TGFß 1-3, Activin and 

Nodal lead to the activation of ALK5, ALK4 and ALK7 respectively [1]. The kinase domains 

of ALKs 4, 5 and 7 are highly related to each other structurally. Similarly the kinase domains 

of BMP-activated ALKs (ALKs 1, 2 3, and 6) display a high degree of similarity with one 

another, although among these ALK1 is more closely related to ALK2, and ALK3 is more 

closely related to ALK6 [11]. The expression of ALK1 is limited to certain cell types, 

primarily in endothelial cells, and has also been implicated in mediating TGFß-induced 

phosphorylation of Smad1/5/8 in conjunction with ALK5 [12, 13]. Over the past few years 

several small molecule inhibitors of various ALKs have been developed. SB-431542 [11, 14, 

15], SB-505124 [16], SB-525334 [17], LY-364947 [18, 19], A-83-01 [20], LY-2157299 [21], 

GW-6604 [22] and SD-208 [23] have all been reported as selective inhibitors of the TGFß-

activated ALKs (ALK4, 5 and 7). Similarly, more recently Compound C (but renamed 

Dorsomorphin to describe its effect in zebrafish embryos) [24] and its derivative LDN-
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193189 [6, 25] have been reported as selective inhibitors of the BMP-activated ALKs (ALKs 

2, 3 and 6). Although these compounds are described as “selective” inhibitors of specific 

ALKs, extensive specificity tests against other protein kinases have not been reported, except 

for Compound C [26]. Here we report the specificities and potencies of the most commonly 

used chemical inhibitors of the TGFß pathway (SB-431542, SB-505124, LY-364947 and A-

83-01) and BMP pathway (Dorsomorphin and LDN-193189) (Figure 1) by profiling these 

against a panel of up to 123 protein kinases covering a broad spectrum of the human kinome. 

Our data indicate that among the TGFß pathway inhibitors, SB-505124 is a potent and 

selective inhibitor of TGFß-activated ALKs. We also demonstrate that both of the BMP 

pathway inhibitors, Dorsomorphin and LDN-193189, can potently inhibit multiple protein 

kinases in addition to the BMP-activated ALKs. Our specificity data will be useful for 

researchers considering the use of these molecules as BMP and TGFß pathway inhibitors. 

 

2. Materials and Methods 

 
2.1. Materials 

SB-431542, SB-505124, LY-364947 and Dorsomorphin (Compound C) were purchased from 

Sigma. A-83-01 was purchased from Tocris Bioscience. LDN-193189 was purchased from 

Stemgent. 
32

P γ-ATP was from Perkin-Elmer. BMP-2 and TGFß1 were from R&D 

Biosystems. Meso-diaminopimelic acid (meso-DAP) was synthesized by Natalia Shpiro. 

DMSO and Tween-20 were from Sigma. Active GST-ALK2 and GST-ALK4 were purchased 

from Carna Biosciences. Antibodies recognising phospho-Smad1/5/8, phospho-Smad2, 

GAPDH, phospho-ERK1/2 and total ERK1/2 were from Cell Signalling.  

2.2. General Methods 

Tissue culture, immunoblotting, restriction enzyme digests, DNA ligations and other 

recombinant DNA procedures were performed using standard protocols. All DNA constructs 

used were verified by DNA sequencing, performed by DNA Sequencing & Services 

(MRCPPU, College of Life Sciences, University of Dundee, Scotland, www.dnaseq.co.uk) 

using Applied Biosystems Big-Dye Ver 3.1 chemistry on an Applied Biosystems model 3730 

automated capillary DNA sequencer. 

2.3. Specificity Kinase panel 

All protein kinases in the specificity panel were expressed, purified and assayed at The 

National Centre for Protein Kinase Profiling (http://www.kinase-screen.mrc.ac.uk/) as 

previously described [26]. Briefly, all assays (except ALK assays, which are described below) 

were carried out robotically at room temperature (21 °C) and were linear with respect to time 

and enzyme concentration under the conditions used. Assays were performed for 30 min 

using Multidrop Micro reagent dispensers (Thermo Electron Corporation, Waltham, MA, 

U.S.A.) in a 96-well format. The abbreviations for each of the kinases are defined in the 

legend to Figure 2. The concentration of magnesium acetate in the assays was 10 mM and [γ-
33

P]ATP (~800 cpm/pmol) was used at 5 μM for ABL, Aurora A, CK2, CLK2, DAPK1, 

DYRK3, EF2K, EIF2AK3, ERK1, ERK8, GSK3, HER4, HIPK2, IGF-1R, IKK, IRAK1, 

IRR, JAK2, MARK3, MKK1, MKK2, p38 MAPK, p38 MAPK, PAK2, PAK5, 

PIM3,PKB, PKC, PRAK, RIPK2, TAK1, TLK1 and ZAP70, 20 μM for Aurora B, BRK, 

BRSK1, CAMKK, CDK2-Cyclin A, CHK1, CHK2, CK1, CSK, EPH-B1, EPH-B2, EPH-

B3, ERK2, FGF-R1, GCK, HIPK1, HIPK3, IR, IRAK4, JNK1, JNK2, JNK3, LKB1, 

MAPKAP-K2, MAPKAP-K3, MARK1, MARK2, MEKK1, MLK3, MNK1, MSK1, MST4, 

NEK2, OSR1, p38 MAPK, PAK4, PAK6, PDK1, PIM1, PIM2, PKA, PKCγ, PKD1, PLK1, 

PRK2, ROCK2, RSK1, SGK1, SmMLCK, SYK, TAO1, TIE2, TrkA, TTK, VEG-FR and 

YES1 and 50 μM for AMPK, ASK1, BRSK2, BTK, CAMK1, DYRK1A, DYRK2, EPH-A2, 

EPH-A4, EPH-B4, IKK, Lck, MARK4, MELK, MINK1, MKK6, MLK1, MNK2, MPSK1, 

MST2, NEK6, NUAK1, p38 MAPK, PHK, PKB, PKC, RSK2, S6K1, Src, SRPK1, 
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STK33 and TBK1 in order to be at or below the Km for ATP for each enzyme. For kinase 

assays with CK1 isoforms, 300 μM CK1-peptide KRRRALS*VASLPGL (where S* is 

phospho Serine) was used as the substrate. 

2.4. Cell Culture, Manipulation and Lysis: 

Human keratinocyte (HaCaT) cells were cultured in 10-cm diameter dishes in Dulbecco's 

Modified Eagle's medium (DMEM) supplemented with 10% Foetal bovine serum, 1% 

penicillin/streptomycin mix and 2 mM L-Glutamine (D10F). RAW 264.7 cells (Mouse 

leukaemic monocyte macrophage cell line) were cultured as above except that foetal bovine 

serum was heat inactivated at 65 °C for 1h prior to use. Both cell lines were grown under a 

humidified atmosphere with 5 % CO2 at a constant temperature of 37 °C. HaCaT cells were 

deprived of serum for 16h prior to treatment with ligands or inhibitors. Unless stated 

otherwise, cells were treated with the appropriate small molecule inhibitors or solvent control 

2h prior to treating cells with BMP-2 (25 ng/ml final), TGFß  (50 pM final) or Meso-DAP (15 

µM) for 1h. Cells were then washed once with ice-cold PBS and lysed in 0.5 ml ice-cold 

complete lysis buffer (50 mMTris-HCl pH7.5, 1 mM EGTA, 1 mM EDTA, 1 % Triton X-100, 

1 mM sodium orthovanadate, 50 mM sodium flouride, 5mM sodium pyrophosphate, 0.27 M 

sucrose, 5 mM ß-glycerophosphate, 0.1 % (v/v) 2-mercaptoethanol, 1 tablet per 25 ml of 

complete protease inhibitor cocktail). The extracts were spun down at 16,000 g at 4 
o
C for 10 

minutes prior to snap-freezing in liquid nitrogen and storing at -80 °C if not processed 

immediately. 

2.5. SDS-PAGE and Western Blotting: 

Cell extracts (20 μg) were heated at 95 °C for 5 min in 1XSDS sample buffer (62.5 mM Tris-

HCl pH 6.8, 10% (v/v) Glycerol, 2% (w/v) SDS, 0.02% (w/v) bromophenol blue, and 1% 

(v/v) β-mercaptoethanol), resolved on a 10% polyacrylamide gel by electrophoresis and 

transferred to nitrocellulose membranes. Membranes were blocked in TBS-T buffer [50 mM 

Tris-HCl pH 7.5, 0.15 M NaCl and 0.1% (w/v) Tween-20] containing 10% (w/v) non-fat 

milk. The membranes were then incubated with the indicated antibodies, diluted in TBS-T 

containing 10% (w/v) milk for 16 h at 4 °C. The membranes were washed 2x10 min in TBS-T 

buffer, probed with the secondary antibody (either HRP-conjugated or IRDye-800 or -680 

conjugated and diluted 1:5000 in TBS-T/5% milk) for 1h at room temperature, and washed 

3x10 min in TBS-T buffer. Detection was performed by using enhanced chemiluminescence 

reagent for HRP-conjugated secondary antibodies and by using the Odyssey Imaging System 

(LI-COR Biosciences) for IRDye-800 or -680 conjugated antibodies. For IC50 determinations, 

the intensities of the bands corresponding to appropriate phosphorylated Smads and 

corresponding total Smads were quantified using the Odyssey Imaging System software.  

2.6. ALK2, ALK3, ALK4 and ALK5 Kinase assays: N-terminal GST-tagged constitutively 

active mutant of ALK3 (Q233D, 187-532), wild type GST-ALK5 (200-503) and wild type 

GST-BMPRII (174-1038) were cloned into pFastBac bacculovirus vectors (Invitrogen) and 

expressed in Sf9 insect cells. For kinase assays, 20 µl reactions were setup consisting of 150 

ng of kinase (GST-ALK2, 3, 4 or 5) and 2 µg substrate protein (GST-Smad1 or 2) in a buffer 

containing 50 mM TrisHCl pH 7.5, 0.1% 2-mercaptoethanol, 0.1 mM EGTA, 10 mM MgCl2, 

0.5 µM Microcystein-LR, 0.1 mM 
32

P-ATP (500 cpm/pmole) and 5% DMSO or DMSO 

containing the appropriate concentrations of the small molecule inhibitors. For ALK2 and 

ALK3 assays, GST-Smad1 was used as a substrate. For ALK4 and ALK5 assays, GST-Smad2 

was used as a substrate. ALK3 assays also contained 150 ng of GST-BMPRII. The assays 

were performed at 30 °C for 30 minutes and stopped by adding 1X SDS sample buffer and 

heating at 95 °C for 5 minutes. The samples were resolved by SDS-PAGE, the gels stained 

with Coomassie Blue and dried. The radioactivity was analysed by autoradiography. For IC50 

and percentage kinase activity remaining determinations, the stained bands representing 

protein substrates were excised and the radioactivity measured. 
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3. Results 

 
3.1. Specificities of Inhibitors of the TGFß pathway 

Although multiple small molecule inhibitors have been reported as specific inhibitors of 

TGFß pathway, SB-431542, SB-505124, LY-364947 and A-83-01 have been the most widely 

exploited in studies investigating the physiological roles of TGFß ligands, together 

accounting for over 300 publications. In this study we have profiled the specificities of these 

molecules against a panel of up to 123 protein kinases in vitro (Figure 2A-D; Figure 4). 

Structurally SB-431542 is similar to SB-505124 and LY-364947 is similar to A 83-01 (Figure 

1).  

3.2. Specificities and Potencies of SB-431542 and SB-505124 

SB-431542 and SB-505124 were both developed as ALK5 inhibitors from triarylimidazole 

templates [11, 14-16]. Both compounds are ATP-competitive, reversible inhibitors of ALK5 

and can also inhibit ALKs 4 and 7 [11, 14-16]. SB-431542 was the first small molecule 

inhibitor of ALKs 4, 5 and 7 to be reported and has been the most widely used inhibitor of the 

TGFß pathway resulting in over 200 research reports [11, 14, 15]. We tested the ability of 

both SB-431542 and SB-505124 to inhibit the activity of a panel of over 105 protein kinases 

at two different concentrations (Figure 2A&B). At 1 µM, besides ALK5, SB-431542 inhibited 

RIPK2 and CK1 activities by 77% and 70% respectively, while p38 MAPK was inhibited 

by 30% (Figure 2A). At 0.1 µM, SB-431542 inhibited RIPK2 and CK1 by 33% and 29% 

respectively (Figure 2A). Similarly 1 µM SB-505124 inhibited RIPK2 by about 72% and 

p38 MAPK by 49% but did not inhibit CK1 (Figure 2B). At 0.1µM, SB-505124 inhibited 

RIPK2 by 18% but CK1 and p38 MAPK were not inhibited (Figure 2B). At both 

concentrations, SB-431542 and SB-505124 inhibited ALK5 activity in vitro but did not 

inhibit ALK3 (Figure 2A&B, Figure 4A&B). At both concentrations the activities of all other 

kinases in the panel were not significantly inhibited by either of these compounds (Figure 

2A&B). 

SB-431542 inhibits the phosphorylation of Smad3 by ALK5 and ALK4 in vitro with an IC50 

of 0.094 µM and 0.14 µM respectively [11] (Table 1A). In contrast, SB-505124 inhibits the 

phosphorylation of Smad3 by ALK5 and ALK4 with an IC50 of 0.047 µM and 0.129 µM 

respectively [16] (Table 1A). We determined that SB-431542 and SB-505124 inhibit RIPK2 

with IC50 of 0.41 µM (4-fold lower potency than that seen for ALK5) and 0.35 µM (7-fold) 

respectively (Table 2). Because SB-431542 also potently inhibited CK1 at 1 µM (Figure 

2A), we tested the ability of both SB-431542 and SB-505124 to inhibit CK1 isoforms in vitro. 

SB-431542 potently inhibited CK1, CK1 and CK1 isoforms with IC50 of 1.34 µM, 0.92 

µM and 0.38 µM respectively but did not inhibit CK1γ (Table 2). SB-505124 inhibited 

CK1, CK1 and CK1 isoforms with IC50 of 19.44 µM, 3.38µM and 1.60 µM respectively 

but did not inhibit CK1γ (Table 2). Both SB-431542 and SB-505124 also inhibit p38 MAPK 

at high concentrations with IC50 values reported to be >10 µM [11, 16].  

SB-505124 is reported to be a more potent inhibitor of the TGFß pathway in cells than SB-

431542 [16]. In multiple cell lines the TGFß induced phosphorylation of Smad2 was inhibited 

by SB-505124 and SB-431542 with IC50 values of ~0.25 µM and 0.5-1 µM respectively [11, 

16] (Table 1A). Similarly SB-505124 inhibited the ability of constitutively active ALK5 to 

induce the expression of CAGA-luciferase reporter activity more potently than SB-431542 

[16] (Table 1A). Both inhibitors were also shown to inhibit the phosphorylation of Smad2 and 

expression of CAGA-Luciferase reporter activities driven by constitutively active ALK4 and 

ALK7 [11, 16].  

3.3. Specificities and Potencies of LY-364947 and A-83-01 

LY-364947, a pyrazole-based small molecule, was developed as an inhibitor of ALK5 and is 

an ATP-competitive, cell permeable inhibitor [18, 19]. In vitro, it inhibits ALK5 with an IC50 
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of 0.058 µM, potency comparable to that of SB-505124 [19](Table 1A). Furthermore it 

inhibits TGFß-induced phosphorylation of Smad2 in cells with a similar potency as SB-

505124 (Table 1A). When profiled against 123 protein kinases (Figure 2C), LY-364947 at 1 

µM inhibited ALK5, RIPK2, VEGF-R, CK1 and MINK1 activity by more than 50% and at 

10 µM, in addition to these kinases, it inhibited p38 MAPK, PKD1, GCK, BRK, Lck, 

TAK1, YES1, FGF-R1 and p38ß MAPK by more than 50%. LY-364947 inhibited RIPK2 and 

CK1 with IC50 of 0.11µM and 0.22µM respectively (Table 2). Similarly LY-364947 would 

be predicted to inhibit VEGF-R and MINK1 with similar IC50 values (Figure 2C). LY-364947 

inhibited CK1, CK1 and CK1γ isoforms with IC50 of 2.27 µM, 1.34 µM and 44 µM 

respectively (Table 2). 

A-83-01, structurally related to LY-364947 (Figure 1), was developed as an inhibitor of the 

TGFß pathway using a cell-based CAGA-Luciferase reporter assay driven by constitutively 

active ALKs4, 5 and 7 [20]. A-83-01 inhibited TGFß-induced CAGA-Luciferase reporter 

activity in Mv1Lu lung epithelial cells with an IC50 of 0.03 µM [20](Table 1A), more potently 

than SB-431542 (IC50, 0.25µM) and SB-505124 (IC50, 0.1 µM). However detailed kinetic 

analysis of the ability of A-83-01 to inhibit different ALKs in vitro has not been reported [20]. 

Nonetheless we tested the ability of A-83-01 to inhibit a panel of 107 kinases at 1 µM and 0.1 

µM (Figure 2D). We demonstrate that at 1 µM, A-83-01 inhibited ALK5, VEG-FR, RIPK2, 

MINK1, p38 MAPK, PKD1 and FGF-R1 by more than 50% (Figure 2D). At 0.1µM, ALK5, 

VEG-FR, RIPK2 were inhibited by more than 50% while MINK1, p38 MAPK and FGF-R1 

were inhibited by more than 30% (Figure 2D). A-83-01 potently inhibited RIPK2 with an IC50 

of 0.1 µM (Table 1B) and would be predicted to inhibit VEGF-R with similar potency (Figure 

2D). A-83-01 inhibited CK1, CK1, CK1 and CK1γ isoforms with IC50 of 15.66 µM, 3.42 

µM, 4.59 µM and 29 µM respectively (Table 2). 

3.4. Specificities of Inhibitors of the BMP pathway 

Recently, Dorsomorphin (Compound C) and LDN-193189, a Dorsomorphin derivative, were 

reported as selective and potent inhibitors of the BMP pathway [6, 24, 25]. Subsequently 

these compounds have been widely used in cell-based assays and whole organisms to study 

the physiological roles of the BMP pathway. In this study we have profiled the specificities of 

these molecules against a panel of up to 121 protein kinases in vitro (Figure 3A&B).  

3.5 Specificty of Dorsomorphin (Compound C) as a BMP pathway inhibitor 

In vertebrates BMP signalling plays a crucial role in defining dorso-ventral (DV) axis, where 

inhibition of BMP pathway results in dorsalised axis patterning [27]. A high throughput small 

molecule screen in zebrafish embryos identified Compound C (this was renamed 

Dorsomorphin) as an inhibitor of the BMP pathway as it resulted in dorsalised axis patterning 

of zebrafish embryos [24]. Subsequently Dorsomorphin was reported as a selective small 

molecule inhibitor of BMP pathway and was shown to inhibit BMP-activated ALKs 2, 3 and 

6 [24]. Previously Compound C has been described, and extensively used, as a selective 

inhibitor of AMPK [28]. However, a study looking at the specificity of Compound C profiled 

against a panel of 70 kinases found that it inhibited a number of kinases, including ERK8, 

MNK1, PHK, MELK, DYRK isoforms, HIPK2, Src and Lck, with similar or greater potency 

than AMPK [26]. This information on the specificity profile of Compound C [26] has been 

overlooked by all the reports describing or employing Dorsomorphin as a specific inhibitor of 

the BMP pathway [24, 29-31]. 

In this study we extended the specificity and the potency tests on Dorsomorphin at three 

different concentrations against a panel of 119 protein kinases (Figure 3A). At 10 µM, 

Dorsomorphin inhibited the activities of 64 out of the 119 kinases by >50%. At 1 µM, 

Dorsomorphin inhibited the activities of 34 out of 119 kinases more potently than it inhibited 

AMPK and by >50% (Figure 3A). Even at 0.1µM, VEGF-R, ERK8, GCK, CLK2, DYRK1A, 

PHK, ABL, NUAK1, PRK2 and YES1 were inhibited by >50% implying that Dorsomorphin 

inhibits these kinases with IC50 values lower than 0.1µM (Figure 3A). Dorsomorphin 
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inhibited ALK3 in vitro with an IC50 of ~1 µM while it did not inhibit ALK5 in vitro (Figure 

4C). Furthermore, Dorsomorphin was reported to inhibit the BMP Responsive Element 

(BRE)-Luciferase reporter activity driven by constitutively active ALK2, ALK3 and ALK6 

with IC50 values of 0.2 µM, 0.5 µM and 5-10 µM respectively [24] (Table 1B). Clearly 

Dorsomorphin is not a selective inhibitor of the BMP pathway and is therefore not a good 

candidate for selective inhibition of BMP-activated ALKs. In fact it was recently reported that 

in zebrafish, Dorsomorphin, when used at concentrations sufficient to inhibit the BMP 

pathway, strongly inhibited intersegmental vessel formation by inhibiting VEGF-R2 [32], 

demonstrating the potential off-target effects of using a non-selective inhibitor. 

3.6. Specificity of LDN-193189 as a BMP pathway inhibitor 

Using Dorsomorphin as a template, LDN-193189 was developed as a compound with 

improved potency as a BMP pathway inhibitor [25]. In rat pulmonary artery smooth muscle 

cells (rPASMC), it was shown that LDN-193189 inhibited BMP4-induced phosphorylation of 

Smad1/5/8 with an IC50 of 0.005 µM, an improvement of 94-fold over Dorsomorphin, which 

it inhibits with an IC50 of 0.47 µM [25]. In human keratinocyte HaCaT cells, we observed that 

LDN-193189 inhibits BMP2-induced phosphorylation of Smad1/5/8 with an IC50 of ~0.005 

µM (Figure 5A). In contrast the TGFß-induced phosphorylation of Smad2 was only slightly 

affected at >3 µM but TGFß-induced phosphorylation of Smad1/5/8 was inhibited robustly at 

0.3 µM LDN-193189 (Figure 5B). We next assessed the ability of LDN-193189 to inhibit 

various ALKs in vitro using 100 µM ATP in the assays (Figure 6). LDN-193189 inhibited the 

ability of ALK2 to phosphorylate GST-Smad1 in vitro with an IC50 of 45 nM, while its 

autophosphorylation was inhibited with an IC50 of 30 nM (Figure 6A). LDN-193189 inhibited 

the ability of ALK3 to phosphorylate Smad1 in vitro with an IC50 of 100 nM, although even at 

3 µM, ALK3 was not completely inhibited (Figure 6B). It is also noteworthy that 

autophosphorylation of BMPRII, which was also present in the assay and is required in order 

to activate ALK3 (data not shown), was not inhibited by LDN-193189, implying that BMPRII 

is not inhibited by LDN-193189 (Figure 6B).  LDN-193189 inhibited ALK4 and ALK5 with 

much higher IC50 values of 0.3 µM and 0.5 µM respectively (Figure 6C&D). LDN-193189 

has been reported to inhibit the BRE-Luciferase reporter activity driven by constitutively 

active ALK2 and ALK3 with IC50 of 0.005 µM and 0.03 µM respectively [6] (Table 1B). 

Overall it is evident that LDN-193189 is a very potent inhibitor of the BMP pathway and that 

it can inhibit BMP-activated ALK2 and ALK3 in vitro. However, despite studies describing 

LDN-193189 as a selective and potent inhibitor of the BMP pathway, its specificity and 

potency has not been tested against an extensive array of protein kinases. 

We profiled the specificity and potency of LDN-193189 at three different concentrations 

against a panel of 121 protein kinases covering a broad spectrum of the human kinome 

(Figure 3B). We noted a very similar specificity and potency profile for LDN-193189 and 

Dorsomorphin (Figure 3A&B). Like Dorsomorphin, we found that at 10 µM, LDN-193189 

inhibited 44 out of the 121 kinases by >50%, majority of them very potently (Figure 3B). At 1 

µM, LDN-193189 inhibited 24 out of the 121 protein kinases by >50% and of these RIPK2, 

FGF-R1, NUAK1, CAMKKß, MINK1, GCK, VEG-FR, BRK, YES1 and CLK2 were 

inhibited very potently. Even at 0.1 µM, LDN-193189 inhibited RIPK2, FGF-R1, NUAK1, 

CAMKKß, MINK1, GCK, VEG-FR and BRK by >50%, implying that these kinases are 

inhibited by LDN-193189 with IC50 values lower than 0.1 µM (Figure 3B). Indeed LDN-

193189 inhibits RIPK2 and GCK with IC50 values of 0.025 µM and 0.08 µM respectively, 

values similar to those seen against ALK2 and ALK3 in vitro respectively (Table 2; Figure 

6A&B). 

3.7. Inhibition of RIPK2 by LDN-193189 in RAW macrophage cells 

We noted from above that RIPK2, a member of the receptor interacting protein (RIP) family 

of protein kinases, was inhibited potently in vitro by LDN-193189 (Table 2). RIPK2 is 

implicated in NOD1 and NOD2 signalling and results in the activation of MAP Kinases, 

NFB and inflammatory mediators in response to NOD1/2 agonists. In cells, NOD1 and 
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NOD2 sense peptidoglycan-related molecules from intracellular bacteria that have evaded 

recognition by Toll-like receptors at the cell-surface [33]. In RAW macrophages cells, the 

peptidoglycan-related agonist D-glutamyl-meso-diaminopimelic acid (meso-DAP) induced 

the phosphorylation of ERK1/2 (Figure 7). This induction was inhibited when cells were 

treated with 0.1 µM or 10 µM LDN-193189 (Figure 7), concentrations that are sufficient to 

inhibit BMP signalling (Figure 5A). 

4. Discussion 

In this report we have examined the specificities of the most commonly used small molecule 

inhibitors of the TGFß and BMP pathways against a panel of up to 123 protein kinases. The 

results highlight the potential off-target effects of these small molecule inhibitors when using 

them to assess the physiological roles of TGFß and BMP pathways. Furthermore, because the 

specificity was profiled against only 23% of the human protein kinases, these inhibitors are 

likely to inhibit other kinases that have not yet been studied. While caution is recommended 

in interpreting any impact on the TGFß and BMP pathways resulting from the use of these 

inhibitors, the specificity profile provided herein should provide useful information for 

researchers when deciding which inhibitor to use. We also emphasize the fact that the 

specificity profiles presented in this report were obtained using in vitro kinase assays. We 

recommend using the minimum effective-concentrations against intended targets when using 

any chemical inhibitors to inhibit the BMP/TGFß pathways in cell and animal based assays 

and to test thoroughly whether at these concentrations the molecules also inhibit other kinases 

that are inhibited potently in vitro.  

4.1. Inhibitors of the TGFß pathway: 

Active TGFß signalling has been implicated in the development of fibrotic sclerosis of 

multiple organs including heart, kidney, lungs, liver and skin [2-4]. TGFß signalling is also 

associated with promotion of cancer progression and metastasis [5, 34]. As a result, TGFß -

activated ALKs, in particular ALK5, have been targeted for the development of small 

molecule inhibitors by major pharmaceutical industries [14, 18, 35].  Many ALK5 inhibitors, 

which also potently inhibit ALK4 and ALK7, have entered pre-clinical trials to treat fibrosis 

and advanced metastatic cancers and have met with mixed results [35]. The specificity of 

chemical inhibitors is particularly important when using them in whole organisms, as 

consequences of off-target effects could lead to undesirable side effects. 

Based on specificity and potency of the four inhibitors of the TGFß pathway, we recommend 

the use of SB-505124, at or below 1µM, as an inhibitor of ALKs 4, 5 and 7 in cell based 

assays. While both SB-431542 and SB-505124 are relatively selective inhibitors of ALKs 4, 5 

and 7, SB-505124 is a more potent inhibitor of ALK4, 5 and 7 and inhibits CK1 isoforms less 

potently than SB-431542 (Table 1A & 2). Furthermore, in cell-based assays, SB-505124 was 

reported to be less cytotoxic than SB-431542 [16]. Both inhibit RIPK2 with similar IC50 

values (Table 2) and we recommend that RIPK2 inhibition be assessed at concentrations of 

SB-505124 used to inhibit TGFß signalling. SB-525334, which is structurally very closely 

related to SB-505124 (Figure 1), has been reported to be around 3-fold more potent inhibitor 

of ALK5 and ALK4 compared to SB-505124 [36], however it has not been used as 

extensively as other ALK5 inhibitors. At concentrations sufficient to inhibit ALK5, both LY-

364947 and A-83-01 inhibited RIPK2, MINK1 and VEGF-R potently. LY-364947 also 

inhibited CK1 isoforms potently while A-83-01 inhibited p38 MAPK, PKD1 and FGF-R1 

potently (Figure 2C&D). When using LY-364947 and A-83-01 as TGFß pathway inhibitors, 

these potential off-target effects have to be considered. One of the impediments to using small 

molecule inhibitors of TGFß pathway is that they inhibit ALKs 4, 5 and 7 and show no 

significant selectivity between these ALKs. Knockout models of ALK4, ALK5 or ALK7 

display unique phenotypes [37, 38] suggesting unique cellular or contextual roles for these 

ALKs. Development of ALK-specific inhibitors will be essential to probe the roles of 
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individual ALKs in cells as well as target selective ALKs that may be responsible for driving 

a particular disease states. 

4.2. Inhibitors of the BMP pathway: 

While strong pharmaceutical efforts to develop small molecule inhibitors against the TGFß 

pathway have led to multiple ALK4, ALK5 and ALK7 inhibitors, the development of small 

molecule inhibitors of the BMP pathway has lagged behind. BMP signalling plays critical 

roles during embryogenesis, in controlling the fate of various progenitor cell populations, 

including embryonic stem cells and hematopoietic stem cells, and in most differentiated and 

specialized cells and in skeletogenesis [39-42]. Selective small molecule inhibitors of the 

BMP pathway are desirable in dissecting the physiological roles of BMP signalling in 

different cellular contexts. ALKs 2, 3 and 6 mediate BMP signals in most tissues, while 

ALK1, expressed mainly in endothelial cells, signals through both BMP and TGFß ligands 

[12, 13]. Sustained BMP signalling driven by a constitutively active mutants of ALK6 have 

been implicated in heterotopic ossification [6]. Similarly overexpression of certain BMP 

ligands and activation of downstream signalling has been reported in some cancers [43]. 

Selective small molecule inhibitors of BMP activated ALKs could be therapeutically 

beneficial against these diseases. Dorsomorphin and LDN-193189, the only two small 

molecule inhibitors of the BMP pathway are rather non-specific as they inhibit a number of 

other protein kinases potently. Some of the off-target effects of using Dorsomorphin at 

concentrations sufficient to inhibit BMP signalling have been demonstrated and others likely 

exist [26, 32]. For these reasons use of Dorsomorphin to inhibit BMP pathway is not 

recommended.  

LDN-193189 on the other hand is a very potent inhibitor of BMP signalling, inhibiting BMP-

induced phosphorylation of Smad1 in cells with an IC50 of 5 nM [6, 25] (Figure 5A). Because 

ALK2 and ALK3 were inhibited in vitro by LDN-193189 with IC50 of 30-45 nM and 100 nM 

respectively, it was rather surprising that the BMP pathway in cells was inhibited with a 

substantially lower IC50. This could mean that LDN-193189 binds very efficiently, possibly 

allosterically, to the BMP-activated ALKs in cells. However crystal structures of LDN-

193189 in complex with the kinase domain of ALK1 shows LDN-193189 binding to the ATP-

binding pocket of ALK1 kinase domain (Link: 

http://www.thesgc.org/structures/structure_description/3MY0/). Alternatively the binding of 

LDN-193189 to BMP-activated ALKs could affect the formation of BMP-induced complexes 

between these ALKs and the upstream type II receptors, which would thus inhibit the 

activation of type I receptors. Furthermore like Dorsomorphin, LDN-193189 inhibited a 

number of other kinases very potently. While LDN-193189 displayed improved potency 

against BMP-activated ALKs over Dorsomorphin, the potency with which both of these 

compounds inhibit many other kinases did not change significantly (Figure 3). Therefore it is 

possible that the effects on LDN-193189 to inhibit BMP signalling so potently could be only 

partly dependent on its effects on ALKs and partly on its effects on other protein kinases, 

which may impact on the activation or activity of ALKs or the access of ALKs to their 

substrates. When using LDN-193189 as an inhibitor of the BMP pathway in cells or whole 

organisms, the consequences of its ability to inhibit other kinases, notably RIPK2, FGF-R1, 

NUAK1, CAMKKß, MINK1, GCK, VEG-FR and BRK should be considered. Nonetheless 

due to its potency as a BMP pathway inhibitor, LDN-193189 provides a very good platform 

to design derivatives that could enhance its selectivity for BMP-activated ALKs.  

Conclusions: 

- Based on in vitro specificity tests against a substantial panel of human kinases, 

routinely used TGFß pathway inhibitors (SB-431542, SB-505124, LY-364947 and A-

83-01) are relatively more selective than the BMP pathway inhibitors (Dorsomorphin 

and LDN-193189). 
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- Of the TGFß pathway inhibitors, we recommend SB-505124, to be used at or below 

1µM for cell-based assays, as the most suitable molecule for use as an inhibitor of 

ALKs 4, 5 & 7 and the TGFß pathway. 

- Dorsomorphin, also known as Compound C, is a non-specific inhibitor of BMP-

activated ALKs and potently inhibits many more kinases in vitro. Therefore we do not 

recommend the use of Dorsomorphin as a selective BMP pathway inhibitor. 

- LDN-193189, while being a potent inhibitor of the BMP pathway, also potently 

inhibits multiple kinases in vitro. At concentrations sufficient to inhibit the BMP 

pathway, LDN-193189 inhibits RIPK2-mediated phosphorylation of ERK1/2 in cells. 

Therefore its use as a selective inhibitor of the BMP pathway has to be considered 

with caution. 

 

Acknowledgements: 

We thank Thomas Macartney for the cloning of ALK3, ALK5, BMPR2 and Smad constructs. 

We thank the staff at the National Centre for Protein Kinase Profiling (www.kinase-

screen.mrc.ac.uk) for undertaking the kinase specificity screening, the Sequencing Service 

(School of Life Sciences, University of Dundee, Scotland) for DNA sequencing and the 

protein production teams [Division of Signal Transduction Therapy (DSTT), University of 

Dundee] coordinated by Hilary McLauchlan and James Hastie for expression and purification 

of proteins. We thank Mazin Al-Salihi and David Bruce for helpful discussions. We thank the 

Medical Research Council, and the pharmaceutical companies supporting the Division of 

Signal Transduction Therapy Unit (AstraZeneca, Boehringer-Ingelheim, GlaxoSmithKline, 

Merck-Serono and Pfizer) for financial support. 

 

References 

[1] Shi Y, Massague J, Cell. 2003;113:685-700. 
[2] Border WA, Noble NA, N Engl J Med. 1994;331:1286-1292. 
[3] Bottinger EP, Bitzer M, J Am Soc Nephrol. 2002;13:2600-2610. 
[4] Gu L, Zhu YJ, Yang X, Guo ZJ, Xu WB, Tian XL, Acta Pharmacol Sin. 
2007;28:382-391. 
[5] Massague J, Cell. 2008;134:215-230. 
[6] Yu PB, Deng DY, Lai CS, Hong CC, Cuny GD, Bouxsein ML, Hong DW, McManus 
PM, Katagiri T, Sachidanandan C, Kamiya N, Fukuda T, Mishina Y, Peterson RT, 
Bloch KD, Nat Med. 2008;14:1363-1369. 
[7] Bierie B, Moses HL, Cytokine Growth Factor Rev.21:49-59. 
[8] Heldin CH, Miyazono K, ten Dijke P, Nature. 1997;390:465-471. 
[9] Wrana JL, Attisano L, Wieser R, Ventura F, Massague J, Nature. 1994;370:341-
347. 
[10] Massague J, Gomis RR, FEBS Lett. 2006;580:2811-2820. 
[11] Inman GJ, Nicolas FJ, Callahan JF, Harling JD, Gaster LM, Reith AD, Laping NJ, 
Hill CS, Mol Pharmacol. 2002;62:65-74. 
[12] Oh SP, Seki T, Goss KA, Imamura T, Yi Y, Donahoe PK, Li L, Miyazono K, ten 
Dijke P, Kim S, Li E, Proc Natl Acad Sci U S A. 2000;97:2626-2631. 
[13] Wrighton KH, Lin X, Yu PB, Feng XH, J Biol Chem. 2009;284:9755-9763. 
[14] Callahan JF, Burgess JL, Fornwald JA, Gaster LM, Harling JD, Harrington FP, 
Heer J, Kwon C, Lehr R, Mathur A, Olson BA, Weinstock J, Laping NJ, J Med Chem. 
2002;45:999-1001. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 12 

[15] Laping NJ, Grygielko E, Mathur A, Butter S, Bomberger J, Tweed C, Martin W, 
Fornwald J, Lehr R, Harling J, Gaster L, Callahan JF, Olson BA, Mol Pharmacol. 
2002;62:58-64. 
[16] DaCosta Byfield S, Major C, Laping NJ, Roberts AB, Mol Pharmacol. 
2004;65:744-752. 
[17] Laping NJ, Everitt JI, Frazier KS, Burgert M, Portis MJ, Cadacio C, Gold LI, 
Walker CL, Clin Cancer Res. 2007;13:3087-3099. 
[18] Sawyer JS, Anderson BD, Beight DW, Campbell RM, Jones ML, Herron DK, 
Lampe JW, McCowan JR, McMillen WT, Mort N, Parsons S, Smith EC, Vieth M, 
Weir LC, Yan L, Zhang F, Yingling JM, J Med Chem. 2003;46:3953-3956. 
[19] Peng SB, Yan L, Xia X, Watkins SA, Brooks HB, Beight D, Herron DK, Jones 
ML, Lampe JW, McMillen WT, Mort N, Sawyer JS, Yingling JM, Biochemistry. 
2005;44:2293-2304. 
[20] Tojo M, Hamashima Y, Hanyu A, Kajimoto T, Saitoh M, Miyazono K, Node M, 
Imamura T, Cancer Sci. 2005;96:791-800. 
[21] Bueno L, de Alwis DP, Pitou C, Yingling J, Lahn M, Glatt S, Troconiz IF, Eur J 
Cancer. 2008;44:142-150. 
[22] de Gouville AC, Boullay V, Krysa G, Pilot J, Brusq JM, Loriolle F, Gauthier JM, 
Papworth SA, Laroze A, Gellibert F, Huet S, Br J Pharmacol. 2005;145:166-177. 
[23] Uhl M, Aulwurm S, Wischhusen J, Weiler M, Ma JY, Almirez R, Mangadu R, 
Liu YW, Platten M, Herrlinger U, Murphy A, Wong DH, Wick W, Higgins LS, Weller 
M, Cancer Res. 2004;64:7954-7961. 
[24] Yu PB, Hong CC, Sachidanandan C, Babitt JL, Deng DY, Hoyng SA, Lin HY, 
Bloch KD, Peterson RT, Nat Chem Biol. 2008;4:33-41. 
[25] Cuny GD, Yu PB, Laha JK, Xing X, Liu JF, Lai CS, Deng DY, Sachidanandan C, 
Bloch KD, Peterson RT, Bioorg Med Chem Lett. 2008;18:4388-4392. 
[26] Bain J, Plater L, Elliott M, Shpiro N, Hastie CJ, McLauchlan H, Klevernic I, 
Arthur JS, Alessi DR, Cohen P, Biochem J. 2007;408:297-315. 
[27] Nguyen VH, Schmid B, Trout J, Connors SA, Ekker M, Mullins MC, Dev Biol. 
1998;199:93-110. 
[28] Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, 
Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE, J Clin Invest. 
2001;108:1167-1174. 
[29] Hong CC, Yu PB, Cytokine Growth Factor Rev. 2009;20:409-418. 
[30] Boergermann JH, Kopf J, Yu PB, Knaus P, Int J Biochem Cell Biol.42:1802-
1807. 
[31] Hao J, Daleo MA, Murphy CK, Yu PB, Ho JN, Hu J, Peterson RT, Hatzopoulos 
AK, Hong CC, PLoS One. 2008;3:e2904. 
[32] Cannon JE, Upton PD, Smith JC, Morrell NW, Br J Pharmacol.161:140-149. 
[33] Inohara, Chamaillard, McDonald C, Nunez G, Annu Rev Biochem. 
2005;74:355-383. 
[34] Padua D, Massague J, Cell Res. 2009;19:89-102. 
[35] Seoane J, Clin Transl Oncol. 2008;10:14-19. 
[36] Grygielko ET, Martin WM, Tweed C, Thornton P, Harling J, Brooks DP, 
Laping NJ, J Pharmacol Exp Ther. 2005;313:943-951. 
[37] Itoh F, Itoh S, Carvalho RL, Adachi T, Ema M, Goumans MJ, Larsson J, 
Karlsson S, Takahashi S, Mummery CL, Dijke PT, Kato M, Lab Invest. 
2009;89:800-810. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 13 

[38] Jornvall H, Reissmann E, Andersson O, Mehrkash M, Ibanez CF, Mol Cell Biol. 
2004;24:9383-9389. 
[39] Chen D, Zhao M, Mundy GR, Growth Factors. 2004;22:233-241. 
[40] De Robertis EM, Kuroda H, Annu Rev Cell Dev Biol. 2004;20:285-308. 
[41] Li X, Cao X, Ann N Y Acad Sci. 2006;1068:26-40. 
[42] Varga AC, Wrana JL, Oncogene. 2005;24:5713-5721. 
[43] Blanco Calvo M, Bolos Fernandez V, Medina Villaamil V, Aparicio Gallego G, 
Diaz Prado S, Grande Pulido E, Clin Transl Oncol. 2009;11:126-137. 
 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 14 

FIGURE LEGENDS 
 

Figure 1. Chemical structures of the small molecule inhibitors of the TGFß (A-E) and BMP 

pathways (F&G). 

 

Figure 2. The specificities of TGFß pathway inhibitors SB-431542 (A), SB-505124 (B), LY-

364947 (C) & A-83-01 (D) against a panel of up to 123 protein kinases. The results are 

presented as bars indicating percentage activity remaining for each kinase (averages of two 

duplicate determinations) in the presence of the indicated concentration of the inhibitor 

compared with a control lacking the inhibitor ± standard deviation. Further details of the 

assays are given in the Methods section. The results are ranked according to the percentage 

activity remaining when the assays were performed in the presence of the indicated inhibitors 

at 1 µM. Protein kinases referred to in the Results section are indicated by red arrows. 

Abbreviations for the protein kinases not described in the text are as follows: ABL, Abelson 

murine leukemia viral oncogene homolog; AMPK, AMP-activated protein kinase; ASK, 

Apoptosis signal regulating kinase; BRK, Breast tumour kinase; BRSK, brain-specific kinase; 

BTK, Bruton agammaglobulinemia tyrosine kinase; CaMK, calmodulin-dependent kinase; 

CaMKK, CaMK kinase; CDK, cyclin dependent kinase; CHK, checkpoint kinase; CK, casein 

kinase; CLK, CDC-like Kinase; CSK, C-terminal Src kinase; DAPK, Death-Associated 

Protein Kinase; DYRK, dual-specificity tyrosine-phosphorylated and regulated kinase; eIF, 

eukaryotic translation initiation factor;EF2K, elongation-factor-2-kinase; EPH, ephrin; ERK, 

extracellular-signal-regulated kinase; FGF-R, fibroblast-growth-factor receptor; GCK, 

germinal centre kinase; GSK, glycogen synthase kinase; HER4, V-erb a erythroblastic 

leukemia viral oncogene homolog 1; HIPK, homeodomain-interacting protein kinase; IGF, 

insulin-like growth factor; IKK, inhibitory κB kinase; IR, insulin receptor; IRAK, Interleukin-

1 Receptor-Associated Kinase; IRR, insulin related receptor; JAK, Janus Kinase; JNK, c-Jun 

N-terminal kinase; Lck, lymphocyte cell-specific protein tyrosine kinase; LKB1, MO25, 

STRAD, Ser/Thr Kinase 11; MAPKAP-K, MAPK-activated protein kinase; MARK, 

microtubule-affinity-regulating kinase; MEKK, mitogen-activated protein kinase kinase 

kinase; MELK, maternal embryonic leucine-zipper kinase; MINK, misshapen-like kinase; 

MLCK, smooth-muscle myosin light-chain kinase; MLK, mixed lineage kinase ; MNK, 

MAPK-integrating protein kinase; MSK, mitogen- and stress-activated protein kinase; 

MSPK, Myristoylated and Palmitoylated serine/threonine protein Kinase; MST, mammalian 

homologue Ste20-like kinase; NEK, NIMA (never in mitosis in Aspergillus nidulans)-related 

kinase; NUAK, SnF1-like Kinase; OSR, Oxidative Stress Responsive; PAK, p21-activated 

protein kinase; PHK, phosphorylase kinase; PDK, 3-phosphoinositide-dependent protein 

kinase; PIM, provirus integration site for Moloney murine leukaemia virus; PKA, cAMP-

dependent protein kinase; PKB, protein kinase B (also called Akt); PKC, protein kinase C; 

PKD, protein kinase D; PLK, polo-like kinase; PRAK, p38-regulated activated kinase; PRK, 

protein kinase C-related kinase; RIPK, receptor interacting protein kinase; ROCK, Rho-

dependent protein kinase; RSK, p90 ribosomal S6 kinase;S6K, S6 kinase; SGK, serum- and 

glucocorticoid-induced kinase; Src, sarcoma kinase; SRPK, serine-arginine protein kinase; 

STK, Serine / Threonine Kinase; SYK, spleen tyrosine kinase; TAK, Transforming growth 

factor beta activated kinase; TAB, TAK1 binding subunit; TAO, thousand and one amino 

acid protein kinase; TBK, TANK-binding kinase; TIE, Tunica Internal Endothelial cell 

kinase; TLK, tousled-like kinase; TrkA, Neurotrophic tyrosine kinase, receptor, type 1 TTK, 

Phosphotyrosine picked threonine kinase; VEGFR, vascular endothelial growth factor 

receptor; YES, Yamaguchi sarcoma viral oncogene homologue; ZAP, zeta chain associated 

protein kinase. 

 

Figure 3. The specificities of BMP pathway inhibitors, Dorsomorphin (A) and LDN-193189 

(B), against a panel of up to 121 kinases. The results are presented as bars indicating 

percentage activity remaining for each kinase (averages of two duplicate determinations) in 

the presence of the indicated concentration of the inhibitor compared with a control lacking 
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the inhibitor ± standard deviation. Further details of the assays are given in the Methods 

section. The results are ranked according to the percentage activity remaining when the assays 

were performed in the presence of the indicated inhibitors at 1 µM. Protein kinases referred to 

in the Results section are indicated by red arrows. Abbreviations for protein kinases are 

described in the Legends to Figure 2. 

 

Figure 4: Inhibition of ALK3 and ALK5 by inhibitors of the TGFß and BMP pathways. 

ALK3 (A) and ALK5 (B) were assayed as described in the Methods section in the presence or 

absence of the indicated concentrations of TGFß pathway inhibitors SB-431542, SB-505124, 

LY-364947 and A-83-01. The assay samples were resolved by SDS-PAGE, and the gels were 

Coomassie-stained, dried and analysed by 
32

P autoradiography. For percentage activity 

remaining determinations, Coomassie stained bands corresponding to substrate proteins were 

excised, 
32

P-incorporation measured and the resulting cpm used as a percentage of control. 

(C) As above, except that ALK3 and ALK5 were assayed in the presence or absence of the 

indicated concentrations of Dorsomorphin. 

 

Figure 5. Inhibition of TGFß and BMP pathways by LDN-193189. Serum-starved Human 

keratinocyte (HaCaT) cells were treated with the indicated concentrations of LDN-193189 for 

2h and then treated with BMP-2 (25 ng/ml) (A) or TGFß (50 pM) (B) for 1h. Extracts were 

resolved by SDS-PAGE and transferred to nitrocellulose membranes, which were analysed by 

Western Blotting using phospho-Smad1/5/8, Smad1, phospho-Smad2, Smad2/3 and GAPDH 

antibodies. 

 

Figure 6. LDN-193189 inhibits ALK2 and ALK3 in vitro. ALK2 (A), ALK3 (B), ALK4 (C) 

and ALK5 (D) were assayed as described in the Methods section in the absence or presence 

of the indicated concentrations of LDN-193189. The assay samples were resolved by SDS-

PAGE, and the gels were Coomassie-stained, dried and analysed by 
32

P autoradiography. For 

IC50 determinations, Coomassie stained bands corresponding to substrate proteins were 

excised, 
32

P-incorporation measured and the resulting cpm plotted against concentrations of 

LDN-193189 used.   

 

Figure 7. Inhibition of NOD-RIPK2 pathways by LDN-193189. RAW 264.7 cells (Mouse 

leukaemic monocyte macrophage cells) were incubated with indicated concentrations of 

LDN-193189 for 2h prior to treatment of cells with 15 µM Meso-DAP for 1h. Extracts were 

resolved by SDS-PAGE and transferred to nitrocellulose membranes, which were analysed by 

Western Blotting using phospho-ERK1/2 and total ERK1/2 antibodies. 
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Table 1: Summary of the reported potencies of inhibitors of TGFß and BMP pathways. 

(A) IC50 values for the inhibitors of the TGFß pathway. The appropriate reference for each 

determination is indicated. Abbreviations: TGFß-induced P-Smad2, TGFß-induced 

phosphorylation of Smad2 in cells as detected by Western blotting; CAGA-Luc, CAGA-

Luciferase Reporter Activity dependent on TGFß signalling measured in a cell-based assay; 

ca, constitutively active; nd, not determined. For detailed methodologies, refer to appropriate 

references indicated (B) IC50 values for the inhibitors of the BMP pathway. The appropriate 

reference for each determination is indicated. Abbreviations: BMP-induced P-Smad1, BMP-

induced phosphorylation of Smad1 in cells as detected by Western blotting; ca, constitutively 

active. BRE-Luc, BMP-Responsive Luciferase reporter activity measured in a cell-based 

assay. For detailed protocols, see indicated references.  

 

A. 
Assay SB-431542 SB-505124 LY-364947 A-83-01 

TGFß-induced 

P-Smad2 

0.5-1 μM [11] 0.5 μM [16] 0.135 μM [19] nd 

ALK4 in vitro 

kinase assay 

0.14 μM [15] 0.129μM [16] nd nd 

ALK5 in vitro 

kinase assay 

0.094 μM [11] 0.047 μM [16] 0.058 μM [19] nd 

CAGA-Luc 

(Cells) 

0.25 μM [16] 0.1 μM [16] nd nd 

caALK4 

(CAGA-Luc) 

0.75 μM [11] nd nd 0.100 μM [20] 

caALK5 

(CAGA-Luc) 

0.5 μM [11] nd nd 0.012 μM [20] 

caALK7 

(CAGA-Luc) 

1-2 μM [11] nd nd 0.030 μM [20] 

 

B. 

Assay Dorsomorphin LDN-193189 

BMP-induced P-

Smad1/5/8 

0.47 μM [24] 0.005 μM [25] 

caALK2 

(BRE-Luc) 

0.20 μM [24] 0.005 μM [6] 

caALK3 

(BRE-Luc) 

0.50 μM [24] 0.03 μM [6] 

caALK6 

(BRE-Luc) 

5-10 μM [24] 0.15 μM [6] 
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Table 2: Potencies of compounds developed as TGFß and BMP pathway inhibitors 

against some other kinases. IC50 values were determined from multiple assays carried out at 

ten different inhibitor concentrations. Abbreviations for protein kinases are described in the 

Legends to Figure 2. 
 
Kinase SB-431542 SB-505124 LY-364947 A-83-01 LDN-193189 

RIPK2 0.41 μM 0.35 μM 0.11 μM 0.10 μM 0.025 μM 

CK1 1.34 μM 19.44 μM 2.27 μM 15.66 μM 3.61 μM 

CK1 0.92 μM 3.38 μM 0.22 μM 3.42 μM 0.92 μM 

CK1 0.38 μM 1.60 μM 1.34 μM 4.59 μM 14.24 μM 

CK1 >100 μM >100 μM 43.97 μM 28.55 μM 98.92 μM 

GCK >100 μM >100 μM 7.91 μM 2.22 μM 0.08 μM 
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