443 research outputs found
Anomalous double peak structure in Nb/Ni superconductor/ferromagnet tunneling DOS
We have experimentally investigated the density of states (DOS) in Nb/Ni
(S/F) bilayers as a function of Ni thickness, . Our thinnest samples show
the usual DOS peak at , whereas intermediate-thickness samples
have an anomalous ``double-peak'' structure. For thicker samples ( nm), we see an ``inverted'' DOS which has previously only been reported in
superconductor/weak-ferromagnet structures. We analyze the data using the
self-consistent non-linear Usadel equation and find that we are able to
quantitatively fit the features at if we include a large amount
of spin-orbit scattering in the model. Interestingly, we are unable to
reproduce the sub-gap structure through the addition of any parameter(s).
Therefore, the observed anomalous sub-gap structure represents new physics
beyond that contained in the present Usadel theory.Comment: 4 pages, 3 figure
Regulatory T-cells in chronic lymphocytic leukemia: actor or innocent bystander?
Abstract: Regulatory T (Treg) cells are now under extensive investigation in chronic lymphocytic leukemia (CLL). This small subset of T-cells has been, in fact, considered to be involved in the pathogenesis and progression of CLL. However, whether Treg dysregulation in CLL plays a key role or it rather represents a simple epiphenomenon is still matter of debate. In the former case, Treg cells could be appealing for targeting therapies. Finally, Treg cells have also been proposed as a prognostic indicator of the disease clinical course
The Microcalorimeter Arrays for a Rhenium Experiment (MARE): a next-generation calorimetric neutrino mass experiment
Neutrino oscillation experiments have proved that neutrinos are massive
particles, but can't determine their absolute mass scale. Therefore the
neutrino mass is still an open question in elementary particle physics. An
international collaboration is growing around the project of Microcalorimeter
Arrays for a Rhenium Experiment (MARE) for directly measuring the neutrino mass
with a sensitivity of about 0.2eV/c2. Many groups are joining their experiences
and technical expertise in a common effort towards this challenging experiment.
We discuss the different scenarios and the impact of MARE as a complement of
KATRIN.Comment: 3 pages, 1 figure Nucl. Instr. Meth. A, proceedings of LTD11
workshop, Tokyo 200
Measurement of Scintillation and Ionization Yield and Scintillation Pulse Shape from Nuclear Recoils in Liquid Argon
We have measured the scintillation and ionization yield of recoiling nuclei
in liquid argon as a function of applied electric field by exposing a
dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy
pulsed narrow band neutron beam produced at the Notre Dame Institute for
Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged
to detect and identify neutrons scattered in the TPC and to select the energy
of the recoiling nuclei. We report measurements of the scintillation yields for
nuclear recoils with energies from 10.3 to 57.3 keV and for median applied
electric fields from 0 to 970 V/cm. For the ionization yields, we report
measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486
V/cm. We also report the observation of an anticorrelation between
scintillation and ionization from nuclear recoils, which is similar to the
anticorrelation between scintillation and ionization from electron recoils.
Assuming that the energy loss partitions into excitons and ion pairs from
Kr internal conversion electrons is comparable to that from Bi
conversion electrons, we obtained the numbers of excitons () and ion
pairs () and their ratio () produced by nuclear recoils from
16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in
LAr-TPC signals due to columnar recombination, a comparison of the light and
charge yield of recoils parallel and perpendicular to the applied electric
field is presented for the first time.Comment: v2 to reflect published versio
A New Limit on the Neutrinoless DBD of 130Te
We report the present results of CUORICINO a cryogenic experiment on
neutrinoless double beta decay (DBD) of 130Te consisting of an array of 62
crystals of TeO2 with a total active mass of 40.7 kg. The array is framed
inside of a dilution refrigerator, heavily shielded against environmental
radioactivity and high-energy neutrons, and operated at a temperature of ~8 mK
in the Gran Sasso Underground Laboratory. Temperature pulses induced by
particle interacting in the crystals are recorded and measured by means of
Neutron Transmutation Doped thermistors. The gain of each bolometer is
stabilized with voltage pulses developed by a high stability pulse generator
across heater resistors put in thermal contact with the absorber.
The calibration is performed by means of two thoriated wires routinely
inserted in the set-up. No evidence for a peak indicating neutrinoless DBD of
130Te is detected and a 90% C.L. lower limit of 1.8E24 years is set for the
lifetime of this process. Taking largely into account the uncertainties in the
theoretical values of nuclear matrix elements, this implies an upper boud on
the effective mass of the electron neutrino ranging from 0.2 to 1.1 eV. This
sensitivity is similar to those of the 76Ge experiments.Comment: 4 pages, 2 figure
- …