443 research outputs found

    Anomalous double peak structure in Nb/Ni superconductor/ferromagnet tunneling DOS

    Full text link
    We have experimentally investigated the density of states (DOS) in Nb/Ni (S/F) bilayers as a function of Ni thickness, dFd_F. Our thinnest samples show the usual DOS peak at ±Δ0\pm\Delta_0, whereas intermediate-thickness samples have an anomalous ``double-peak'' structure. For thicker samples (dF≥3.5d_F \geq 3.5 nm), we see an ``inverted'' DOS which has previously only been reported in superconductor/weak-ferromagnet structures. We analyze the data using the self-consistent non-linear Usadel equation and find that we are able to quantitatively fit the features at ±Δ0\pm\Delta_0 if we include a large amount of spin-orbit scattering in the model. Interestingly, we are unable to reproduce the sub-gap structure through the addition of any parameter(s). Therefore, the observed anomalous sub-gap structure represents new physics beyond that contained in the present Usadel theory.Comment: 4 pages, 3 figure

    Regulatory T-cells in chronic lymphocytic leukemia: actor or innocent bystander?

    Get PDF
    Abstract: Regulatory T (Treg) cells are now under extensive investigation in chronic lymphocytic leukemia (CLL). This small subset of T-cells has been, in fact, considered to be involved in the pathogenesis and progression of CLL. However, whether Treg dysregulation in CLL plays a key role or it rather represents a simple epiphenomenon is still matter of debate. In the former case, Treg cells could be appealing for targeting therapies. Finally, Treg cells have also been proposed as a prognostic indicator of the disease clinical course

    The Microcalorimeter Arrays for a Rhenium Experiment (MARE): a next-generation calorimetric neutrino mass experiment

    Full text link
    Neutrino oscillation experiments have proved that neutrinos are massive particles, but can't determine their absolute mass scale. Therefore the neutrino mass is still an open question in elementary particle physics. An international collaboration is growing around the project of Microcalorimeter Arrays for a Rhenium Experiment (MARE) for directly measuring the neutrino mass with a sensitivity of about 0.2eV/c2. Many groups are joining their experiences and technical expertise in a common effort towards this challenging experiment. We discuss the different scenarios and the impact of MARE as a complement of KATRIN.Comment: 3 pages, 1 figure Nucl. Instr. Meth. A, proceedings of LTD11 workshop, Tokyo 200

    Measurement of Scintillation and Ionization Yield and Scintillation Pulse Shape from Nuclear Recoils in Liquid Argon

    Full text link
    We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0 to 970 V/cm. For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V/cm. We also report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from 83m^{83m}Kr internal conversion electrons is comparable to that from 207^{207}Bi conversion electrons, we obtained the numbers of excitons (NexN_{ex}) and ion pairs (NiN_i) and their ratio (Nex/NiN_{ex}/N_i) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.Comment: v2 to reflect published versio

    A New Limit on the Neutrinoless DBD of 130Te

    Full text link
    We report the present results of CUORICINO a cryogenic experiment on neutrinoless double beta decay (DBD) of 130Te consisting of an array of 62 crystals of TeO2 with a total active mass of 40.7 kg. The array is framed inside of a dilution refrigerator, heavily shielded against environmental radioactivity and high-energy neutrons, and operated at a temperature of ~8 mK in the Gran Sasso Underground Laboratory. Temperature pulses induced by particle interacting in the crystals are recorded and measured by means of Neutron Transmutation Doped thermistors. The gain of each bolometer is stabilized with voltage pulses developed by a high stability pulse generator across heater resistors put in thermal contact with the absorber. The calibration is performed by means of two thoriated wires routinely inserted in the set-up. No evidence for a peak indicating neutrinoless DBD of 130Te is detected and a 90% C.L. lower limit of 1.8E24 years is set for the lifetime of this process. Taking largely into account the uncertainties in the theoretical values of nuclear matrix elements, this implies an upper boud on the effective mass of the electron neutrino ranging from 0.2 to 1.1 eV. This sensitivity is similar to those of the 76Ge experiments.Comment: 4 pages, 2 figure
    • …
    corecore