198 research outputs found
Strong-field approximation for harmonic generation in diatomic molecules
The generation of high-order harmonics in diatomic molecules is investigated
within the framework of the strong-field approximation. We show that the
conventional saddle-point approximation is not suitable for large internuclear
distances. An adapted saddle-point method that takes into account the molecular
structure is presented. We analyze the predictions for the harmonic-generation
spectra in both the velocity and the length gauge. At large internuclear
separations, we compare the resulting cutoffs with the predictions of the
simple-man's model. Good agreement is obtained only by using the adapted
saddle-point method combined with the velocity gauge.Comment: 24 pages, 7 figure
High-order harmonic generation with a strong laser field and an attosecond-pulse train: the Dirac Delta comb and monochromatic limits
In recent publications, it has been shown that high-order harmonic generation
can be manipulated by employing a time-delayed attosecond pulse train
superposed to a strong, near-infrared laser field. It is an open question,
however, which is the most adequate way to approximate the attosecond pulse
train in a semi-analytic framework. Employing the Strong-Field Approximation
and saddle-point methods, we make a detailed assessment of the spectra obtained
by modeling the attosecond pulse train by either a monochromatic wave or a
Dirac-Delta comb. These are the two extreme limits of a real train, which is
composed by a finite set of harmonics. Specifically, in the monochromatic
limit, we find the downhill and uphill sets of orbits reported in the
literature, and analyze their influence on the high-harmonic spectra. We show
that, in principle, the downhill trajectories lead to stronger harmonics, and
pronounced enhancements in the low-plateau region. These features are analyzed
in terms of quantum interference effects between pairs of quantum orbits, and
compared to those obtained in the Dirac-Delta limit.Comment: 10 pages, 7 figures (eps files). To appear in Laser Physic
Controlling high-harmonic generation and above-threshold ionization with an attosecond-pulse train
We perform a detailed analysis of how high-order harmonic generation (HHG)
and above-threshold ionization (ATI) can be controlled by a time-delayed
attosecond-pulse train superposed to a strong, near-infrared laser field. In
particular we show that the high-harmonic and photoelectron intensities, the
high-harmonic plateau structure and cutoff energies, and the ATI angular
distributions can be manipulated by changing this delay. This is a direct
consequence of the fact that the attosecond pulse train can be employed as a
tool for constraining the instant an electronic wave packet is ejected in the
continuum. A change in such initial conditions strongly affects its subsequent
motion in the laser field, and thus HHG and ATI. In our studies, we employ the
Strong-Field Approximation and explain the features observed in terms of
interference effects between various electron quantum orbits. Our results are
in agreement with recent experimental findings and theoretical studies
employing purely numerical methods.Comment: 10 pages revtex and 6 figures (eps files
Interference effects in two-photon ATI by multiple orders high harmonics with random or locked phases
We numerically study 2-photon processes using a set of harmonics from a
Ti:Sapphire laser and in particular interference effects in the Above Threshold
Ionization spectra. We compare the situation where the harmonic phases are
assumed locked to the case where they have a random distribution. Suggestions
for possible experiments, using realistic parameters are discussed.Comment: 11 pages, 13 figures, LaTe
Phase distortions of attosecond pulses produced by resonance-enhanced high harmonic generation
Resonant enhancement of high harmonic generation can be obtained in plasmas
containing ions with strong radiative transitions resonant with harmonic
orders. The mechanism for this enhancement is still debated. We perform the
first temporal characterization of the attosecond emission from a tin plasma
under near-resonant conditions for two different resonance detunings. We show
that the resonance considerably changes the relative phase of neighbouring
harmonics. For very small detunings, their phase locking may even be lost,
evidencing strong phase distortions in the emission process and a modified
attosecond structure. These features are well reproduced by our simulations,
allowing their interpretation in terms of the phase of the recombination dipole
moment
Scaling of Wave-Packet Dynamics in an Intense Midinfrared Field
A theoretical investigation is presented that examines the wavelength scaling from near-visible (0.8 µm) to midinfrared (2 µm) of the photoelectron distribution and high harmonics generated by a "single" atom in an intense electromagnetic field. The calculations use a numerical solution of the time-dependent Schrödinger equation (TDSE) in argon and the strong-field approximation in helium. The scaling of electron energies (λ^2), harmonic cutoff (λ^2), and attochirp (λ^-1) agree with classical mechanics, but it is found that, surprisingly, the harmonic yield follows a λ^-(5-6) scaling at constant intensity. In addition, the TDSE results reveal an unexpected contribution from higher-order returns of the rescattering electron wave packet
- …