17,322 research outputs found

    T/B scaling without quasiparticle mass divergence: YbCo2Ge4

    Full text link
    YbCo2_2Ge4_4 is a clean paramagnetic Kondo lattice which displays non-Fermi liquid behavior. We report a detailed investigation of the specific heat, magnetic Gr\"uneisen parameter (Γmag\Gamma_{\rm mag}) and temperature derivative of the magnetization (MM) on a high-quality single crystal at temperatures down to 0.10.1~K and magnetic fields up to 7~T. Γmag\Gamma_{\rm mag} and dM/dTdM/dT display a divergence upon cooling and obey T/BT/B scaling. Similar behavior has previously been found in several other Yb-based Kondo lattices and related to a zero-field quantum critical point without fine tuning of pressure or composition. However, in the approach of B→0B\rightarrow 0 the electronic heat capacity coefficient of YbCo2_2Ge4_4 saturates at low TT, excluding ferromagnetic quantum criticality. This indicates that T/BT/B scaling is insufficient to prove a zero-field quantum critical point.Comment: 6 pages, 6 figures (including supplemental material

    Dynamics of Gravitating Magnetic Monopoles

    Get PDF
    According to previous work on magnetic monopoles, static regular solutions are nonexistent if the vacuum expectation value of the Higgs field η\eta is larger than a critical value ηcr\eta_{{\rm cr}}, which is of the order of the Planck mass. In order to understand the properties of monopoles for η>ηcr\eta>\eta_{{\rm cr}}, we investigate their dynamics numerically. If η\eta is large enough (≫ηcr\gg\eta_{{\rm cr}}), a monopole expands exponentially and a wormhole structure appears around it, regardless of coupling constants and initial configuration. If η\eta is around ηcr\eta_{{\rm cr}}, there are three types of solutions, depending on coupling constants and initial configuration: a monopole either expands as stated above, collapses into a black hole, or comes to take a stable configuration.Comment: 11 pages, revtex, postscript figures; results for various initial conditions are added; to appear in Phys. Rev.

    Effect of Applied Orthorhombic Lattice Distortion on the Antiferromagnetic Phase of CeAuSb2_2

    Full text link
    We study the response of the antiferromagnetism of CeAuSb2_2 to orthorhombic lattice distortion applied through in-plane uniaxial pressure. The response to pressure applied along a ⟹110⟩\langle 110 \rangle lattice direction shows a first-order transition at zero pressure, which shows that the magnetic order lifts the (110)/(11ˉ0)(110)/(1\bar{1}0) symmetry of the unstressed lattice. Sufficient ⟹100⟩\langle 100 \rangle pressure appears to rotate the principal axes of the order from ⟹110⟩\langle 110 \rangle to ⟹100⟩\langle 100 \rangle. At low ⟹100⟩\langle 100 \rangle pressure, the transition at TNT_N is weakly first-order, however it becomes continuous above a threshold ⟹100⟩\langle 100 \rangle pressure. We discuss the possibility that this behavior is driven by order parameter fluctuations, with the restoration of a continuous transition a result of reducing the point-group symmetry of the lattice.Comment: 6 pages, 7 figure

    Numerical Renormalization Group Study of non-Fermi-liquid State on Dilute Uranium Systems

    Full text link
    We investigate the non-Fermi-liquid (NFL) behavior of the impurity Anderson model (IAM) with non-Kramers doublet ground state of the f2^2 configuration under the tetragonal crystalline electric field (CEF). The low energy spectrum is explained by a combination of the NFL and the local-Fermi-liquid parts which are independent with each other. The NFL part of the spectrum has the same form to that of two-channel-Kondo model (TCKM). We have a parameter range that the IAM shows the −ln⁡T- \ln T divergence of the magnetic susceptibility together with the positive magneto resistance. We point out a possibility that the anomalous properties of Ux_xTh1−x_{1-x}Ru2_2Si2_2 including the decreasing resistivity with decreasing temperature can be explained by the NFL scenario of the TCKM type. We also investigate an effect of the lowering of the crystal symmetry. It breaks the NFL behavior at around the temperature, ή/10\delta /10, where ή\delta is the orthorhombic CEF splitting. The NFL behavior is still expected above the temperature, ή/10\delta/10.Comment: 25 pages, 12 figure

    Peculiar Velocities of Nonlinear Structure: Voids in McVittie Spacetime

    Get PDF
    As a study of peculiar velocities of nonlinear structure, we analyze the model of a relativistic thin-shell void in the expanding universe. (1) Adopting McVittie (MV) spacetime as a background universe, we investigate the dynamics of an uncompensated void with negative MV mass. Although the motion itself is quite different from that of a compensated void, as shown by Haines & Harris (1993), the present peculiar velocities are not affected by MV mass. (2) We discuss how precisely the formula in the linear perturbation theory applies to nonlinear relativistic voids, using the results in (1) as well as the previous results for the homogeneous background (Sakai, Maeda, & Sato 1993). (3) We re-examine the effect of the cosmic microwave background radiation. Contrary to the results of Pim & Lake (1986, 1988), we find that the effect is negligible. We show that their results are due to inappropriate initial conditions. Our results (1)-(3) suggest that the formula in the linear perturbation theory is approximately valid even for nonlinear voids.Comment: 12 pages, aastex, 4 ps figures separate, Fig.2 added, to appear in Ap

    Transport Coefficients of Gluon Plasma

    Get PDF
    Transport coefficients of gluon plasma are calculated for a SU(3) pure gauge model by lattice QCD simulations on 163×816^3 \times 8 and 243×824^3 \times 8 lattices. Simulations are carried out at a slightly above the deconfinement transition temperature TcT_c, where a new state of matter is currently being pursued in RHIC experiments. Our results show that the ratio of the shear viscosity to the entropy is less than one and the bulk viscosity is consistent with zero in the region, 1.4≀T/Tc≀1.81.4 \leq T/T_c \leq 1.8 .Comment: 10 pages, Late

    Field induced transition of the S=1 antiferromagnetic chain with anisotropy

    Full text link
    The ground state magnetization process of the S=1 antiferromagnetic chain with the easy-axis single-ion anisotropy described by negative DD is investigated. It is numerically found that a phase transition between two different gapless phases occurs at an intermediate magnetic field between the starting and saturation points of the magnetization for −1.49<D<−0.35-1.49<D<-0.35. The transition is similar to the spin flopping, but it is second-order and not accompanied with any significant anomalous behaviors in the magnetization curve. We also present the phase diagrams in the m-D and H-D planes which reveal a possible re-entrant transition.Comment: 6 pages, Revtex, with 6 eps figures, to appear in Phys. Rev. B (Sep. 1

    An investigation of children's peer trust across culture: is the composition of peer trust universal?

    Get PDF
    The components of children's trust in same-gender peers (trust beliefs, ascribed trustworthiness, and dyadic reciprocal trust) were examined in samples of 8- to 11-year-olds from the UK, Italy, and Japan. Trust was assessed by children's ratings of the extent to which same-gender classmates kept promises and kept secrets. Social relations analyses confirmed that children from each country showed significant: (a) actor variance demonstrating reliable individual differences in trust beliefs, (b) partner variance demonstrating reliable individual differences in ascribed trustworthiness, and (c ) relationship variance demonstrating unique relationships between interaction partners. Cultural differences in trust beliefs and ascribed trustworthiness also emerged and these differences were attributed to the tendency for children from cultures that value societal goals to share personal information with the peer group

    Magnetized Domain Walls in the Deconfined Sakai-Sugimoto Model at Finite Baryon Density

    Get PDF
    The magnetized pure pion gradient (5ϕ\mathcal{5}\phi) phase in the deconfined Sakai-Sugimoto model is explored at zero and finite temperature. We found that the temperature has very small effects on the phase. The thermodynamical properties of the phase shows that the excitations behave like a scalar solitonic free particles. By comparing the free energy of the pion gradient phase to the competing multiquark-pion gradient (MQ-5ϕ\mathcal{5}\phi) phase, it becomes apparent that the pure pion gradient is less thermodynamically preferred than the MQ-5ϕ\mathcal{5}\phi phase. However, in the parameter space where the baryonic chemical potential is smaller than the onset value of the multiquark, the dominating magnetized nuclear matter is the pion gradient phase.Comment: 20 pages, 9 figure
    • 

    corecore