659 research outputs found

    A Motion Estimation based Algorithm for Encoding Time Reduction in HEVC

    Get PDF
    High Efficiency Video Coding (HEVC) is a video compression standard that offers 50% more efficiency at the expense of high encoding time contrasted with the H.264 Advanced Video Coding (AVC) standard. The encoding time must be reduced to satisfy the needs of real-time applications. This paper has proposed the Multi- Level Resolution Vertical Subsampling (MLRVS) algorithm to reduce the encoding time. The vertical subsampling minimizes the number of Sum of Absolute Difference (SAD) computations during the motion estimation process. The complexity reduction algorithm is also used for fast coding the coefficients of the quantised block using a flag decision. Two distinct search patterns are suggested: New Cross Diamond Diamond (NCDD) and New Cross Diamond Hexagonal (NCDH) search patterns, which reduce the time needed to locate the motion vectors. In this paper, the MLRVS algorithm with NCDD and MLRVS algorithm with NCDH search patterns are simulated separately and analyzed. The results show that the encoding time of the encoder is decreased by 55% with MLRVS algorithm using NCDD search pattern and 56% with MLRVS using NCDH search pattern compared to HM16.5 with Test Zone (TZ) search algorithm. These results are achieved with a slight increase in bit rate and negligible deterioration in output video quality

    STANDARDIZATION OF FRIABLE CALLUS DEVELOPMENT IN CATHARANTHUS ROSEUS (LINN.) G. DON

    Get PDF
    Objective: The objective of the study was to develop an effective hormonal combination for the maximum growth of callus and development of friable calli using the same medium with reduced concentration of agar.Methods: The percentage responses of five varied growth hormonal combinations and concentrations, supplemented with Murashige and Skoog (MS)medium were recorded. The effect of casein hydrolysate on callus induction was also studied. The nature of friable calli obtained from best responsive media fortified with 0.7% and 0.6% agar was observed.Results: The present study revealed that, three media viz., MS + 1.0 mg/L BAP + 1.0 mg/L NAA, MS + 1.5 mg/L 2,4-D + 1.0 mg/L Kin and MS + 1.5 mg/L 2,4-D + 0.5 mg/L BAP, as the best responsive media in the descending order. The effect of casein hydrolysate supplemented along with the above three media revealed MS + 1.0 mg/LBAP + 1.0 mg/L NAA + 1.0 gm/L casein hydrolysate as the best responsive media. Also, the above media supplemented with 0.6% agar was found to be the effective in terms of nature and amount of friable callus obtained.Conclusion: The results indicated MS + 1.0 mg/L BAP + 1.0 mg/L NAA + 1.0 gm/L casein hydrolysate + 0.6% agar (85% response) as the best media for the growth and development of both callus and friable callus.Â

    2,6-Disubstituted Piperidines and Piperazine Compounds

    Get PDF
    The preparation of novel microemulsions to be used as precursors for solid nanoparticles is described. The microemulsion precursors consist of either alcohol-in-fluorocarbon microemulsions, liquid hydrocarbon-in-fluorocarbon microemulsions, or liquid hydrocarbon-in-water microemulsions. The formed solid nanoparticles have diameters below 200 nanometers and can be made to entrap various materials including drugs, magnets, and sensors. The solid nanoparticles can be made to target different cells in the body by the inclusion of a cell-specific targeting ligand. Methods of preparing the novel microemulsion precursors and methods to cure solid nanoparticles are provided

    An Experiential Report on the Thayer Method of Teaching across College-Level Chemistry, Biology, Math, and Physics Courses

    Get PDF
    The Thayer method of instruction is a little-known active learning technique that dates back to 1817 at the U.S. Military Academy. This study describes the implementation and statistical evaluation of an adaptation of the Thayer method in a variety of college science and math courses. All courses had five characteristics in common: (i) students were given a daily reading schedule and instructed to prepare before class, (ii) each class started with a question and answer session, (iii) class time minimized the use of lecture, (iv) class time maximized the use of active learning, and (v) students were frequently quizzed. A total of 51 sections across chemistry, biology, math, and physics taught by eight professors involving 542 students were used. Students were surveyed at the beginning and the end of the semester on their attitudes toward teaching methods using a 5-point Likert scale. The data were analyzed using the nonparametric Wilcoxon rank-sum test. The results show three outcomes: (i) students prefer the modified Thayer method over a traditional lecture method, (ii) students report feeling more encouraged to stay in college, and (iii) students report no difference in the amount of time that they spend on reading or working on problems. These three results are encouraging amid efforts to educate and retain STEM students. The modified Thayer method should be considered by those using or seeking to use an active learning technique

    Culture and regeneration of mesophyll-derived protoplasts of sorghum [Sorghum bicolor (L.) Moench]

    Get PDF
    A protocol for plant regeneration from mesophyll/protoplasts of sorghum [Sorghum bicolor (L.) Moench] was developed. The yield of intact protoplasts, their subsequent divisions and regeneration were genotype-dependent. The genotype 296B was always more responsive than IS 32266. For 296B, the sixth leaf from 18-day-old plants kept in dark for 2 days before harvesting was found to be the most suitable source of viable protoplasts. The first division was observed 10–12 days after plating, and the second division after 12–14 days. The maximum plating efficiency was 4.8% in 296 B, followed by 2.48% in IS 32266. Microcolonies were visible after 25–30 days, and microcalli after 60–75 days. Whole plants were obtained after 6–8 weeks of culture of microcalli on MS medium containing 0.2 mg l–1 kinetin and 2 mg l–1 BAP. The frequency of regeneration in 296B and IS 32266 was 12.80% and 10.58%, respectively. Ten plants transferred to pots in the glasshouse established well. The seeds collected from glasshouse-grown plants were sown in the field where plants were grown to maturity

    Osmoregulators proline and glycine betaine counteract salinity stress in canola

    Get PDF
    Salt inundation leads to increased salinization of arable land in many arid and semi-arid regions. Until genetic solutions are found farmers and growers must either abandon salt-affected fields or use agronomic treatments that alleviate salt stress symptoms. Here, field experiments were carried out to study the effect of the osmoregulators proline at 200 mg L-1 and glycine betaine at 400 mg L-1 in counteracting the harmful effect of soil salinity stress on canola plants grown in Egypt. We assessed growth characteristics, yield and biochemical constituents. Results show first that all growth characters decreased with increasing salinity stress but applied osmoregulators alleviated these negative effects. Second, salinity stress decreased photosynthetic pigments, K and P contents, whilst increasing proline, soluble sugars, ascorbic acid, Na and Cl contents. Third, application of osmoregulators without salt stress increased photosynthetic pigments, proline, soluble sugars, N, K and P contents whilst decreasing Na and Cl contents. It is concluded that the exogenously applied osmoregulators glycine betaine and proline can fully or partially counteract the harmful effect of salinity stress on growth and yield of canola.© INRA and Springer-Verlag, France 2012

    Effect of arsenic-phosphorus interaction on arsenic-induced oxidative stress in chickpea plants

    Get PDF
    Arsenic-induced oxidative stress in chickpea was investigated under glasshouse conditions in response to application of arsenic and phosphorus. Three levels of arsenic (0, 30 and 60 mg kg−1) and four levels of P (50, 100, 200, and 400 mg kg−1) were applied to soil-grown plants. Increasing levels of both arsenic and P significantly increased arsenic concentrations in the plants. Shoot growth was reduced with increased arsenic supply regardless of applied P levels. Applied arsenic induced oxidative stress in the plants, and the concentrations of H2O2 and lipid peroxidation were increased. Activity of superoxide dismutase (SOD) and concentrations of non-enzymatic antioxidants decreased in these plants, but activities of catalase (CAT) and ascorbate peroxidase (APX) were significantly increased under arsenic phytotoxicity. Increased supply of P decreased activities of CAT and APX, and decreased concentrations of non-enzymatic antioxidants, but the high-P plants had lowered lipid peroxidation. It can be concluded that P increased uptake of arsenic from the soil, probably by making it more available, but although plant growth was inhibited by arsenic the P may have partially protected the membranes from arsenic-induced oxidative stress

    Divergent evolution of extreme production of variant plant monounsaturated fatty acids

    Get PDF
    Metabolic extremes provide opportunities to understand enzymatic and metabolic plasticity and biotechnological tools for novel biomaterial production. We discovered that seed oils of many Thunbergia species contain up to 92% of the unusual monounsaturated petroselinic acid (18:1Δ6), one of the highest reported levels for a single fatty acid in plants. Supporting the biosynthetic origin of petroselinic acid, we identified a Δ6-stearoyl-acyl carrier protein (18:0-ACP) desaturase from Thunbergia laurifolia, closely related to a previously identified Δ6-palmitoyl-ACP desaturase that produces sapienic acid (16:1Δ6)- rich oils in Thunbergia alata seeds. Guided by a T. laurifolia desaturase crystal structure obtained in this study, enzyme mutagenesis identified key amino acids for functional divergence of Δ6 desaturases from the archetypal Δ9-18:0-ACP desaturase and mutations that result in nonnative enzyme regiospecificity. Furthermore, we demonstrate the utility of the T. laurifolia desaturase for the production of unusual monounsaturated fatty acids in engineered plant and bacterial hosts. Through stepwise metabolic engineering, we provide evidence that divergent evolution of extreme petroselinic acid and sapienic acid production arises from biosynthetic and metabolic functional specialization and enhanced expression of specific enzymes to accommodate metabolism of atypical substrates
    • …
    corecore