70,577 research outputs found
Diffusion in the chromosphere and the composition of the solar corona and energetic particles
Composition observations, in the solar photosphere, and in the upper transition region (TR) and corona imply a change of composition of the solar atmosphere somewhere between the photosphere and the upper TR. Heavy elements with first ionization potential (FIP) 9 eV (high-FIP element) are approx. 4 times less abundant in the TR and corona than in the photosphere, as compared to both hydrogen and heavy elements with lower low-FIP elements. A separation is suggested between neutral and ionized elements in a region where the high-FIP elements are mostly neutral, and the low-FIP elements ionized. This occurs in the chromosphere at altitudes above 600 km and below 2000 km above Photosphere. Whether the diffusion processes can explain the observed change in composition is investigated
Extension of the spin-1/2 frustrated square lattice model: the case of layered vanadium phosphates
We study the influence of the spin lattice distortion on the properties of
frustrated magnetic systems and consider the applicability of the spin-1/2
frustrated square lattice model to materials lacking tetragonal symmetry. We
focus on the case of layered vanadium phosphates AA'VO(PO4)2 (AA' = Pb2, SrZn,
BaZn, and BaCd). To provide a proper microscopic description of these
compounds, we use extensive band structure calculations for real materials and
model structures and supplement this analysis with simulations of thermodynamic
properties, thus facilitating a direct comparison with the experimental data.
Due to the reduced symmetry, the realistic spin model of layered vanadium
phosphates AA'VO(PO4)2 includes four inequivalent exchange couplings: J1 and
J1' between nearest-neighbors and J2 and J2' between next-nearest-neighbors.
The estimates of individual exchange couplings suggest different regimes, from
J1'/J1 and J2'/J2 close to 1 in BaCdVO(PO4)2, a nearly regular frustrated
square lattice, to J1'/J1 ~ 0.7 and J2'/J2 ~ 0.4 in SrZnVO(PO4)2, a frustrated
square lattice with sizable distortion. The underlying structural differences
are analyzed, and the key factors causing the distortion of the spin lattice in
layered vanadium compounds are discussed. We propose possible routes for
finding new frustrated square lattice materials among complex vanadium oxides.
Full diagonalization simulations of thermodynamic properties indicate the
similarity of the extended model to the regular one with averaged couplings. In
case of moderate frustration and moderate distortion, valid for all the
AA'VO(PO4)2 compounds reported so far, the distorted spin lattice can be
considered as a regular square lattice with the couplings (J1+J1')/2 between
nearest-neighbors and (J2+J2')/2 between next-nearest-neighbors.Comment: 14 pages, 9 figures, 4 table
Evaluation of a hybrid hydrostatic bearing for cryogenic turbopump application
A hybrid hydrostatic bearing was designed to operate in liquid hydrogen at speeds to 80,000 rpm and radial loads to 440 n (100 lbf). The bearing assembly consisted of a pair of 20-mm angular-contact ball bearings encased in a journal, which was in turn supported by a fluid film of liquid hydrogen. The size and operating conditions of the bearing were selected to be compatible with the operating requirements of an advanced technology turbopump. Several test parameters were varied to characterize the bearing's steady-state operation. The rotation of the tester shaft was varied between 0 and 80,000 rpm. Bearing inlet fluid pressure was varied between 2.07 and 4.48 MPa (300 and 650 psia), while the fluid sump pressure was independently varied between 0.34 and 2.07 MPa (50 and 300 psia). The maximum radial load applied to the bearing was 440 N (110 lbf). Measured hybrid-hydrostatic-bearing stiffness was 1.5 times greater than predicted, while the fluid flow rate through the bearing was 35 to 65 percent less than predicted. Under two-phase fluid conditions, the stiffness was even greater and the flow rate was less. The optimal pressure ratio for the bearing should be between 0.2 and 0.55 depending on the balance desired between bearing efficiency and stiffness. Startup and shutdown cyclic tests were conducted to demonstrate the ability of the hybrid-hydrostatic-bearing assembly to survive at least a 300-firing-duty cycle. For a typical cycle, the shaft was accelerated to 50,000 rpm in 1.8 sec. The bearing operated for 337 start-stop cycles without failure
Measurement of macroscopic plasma parameters with a radio experiment: Interpretation of the quasi-thermal noise spectrum observed in the solar wind
The ISEE-3 SBH radio receiver has provided the first systematic observations of the quasi-thermal (plasma waves) noise in the solar wind plasma. The theoretical interpretation of that noise involves the particle distribution function so that electric noise measurements with long antennas provide a fast and independent method of measuring plasma parameters: densities and temperatures of a two component (core and halo) electron distribution function have been obtained in that way. The polarization of that noise is frequency dependent and sensitive to the drift velocity of the electron population. Below the plasma frequency, there is evidence of a weak noise spectrum with spectral index -1 which is not yet accounted for by the theory. The theoretical treatment of the noise associated with the low energy (thermal) proton population shows that the moving electrical antenna radiates in the surrounding plasma by Carenkov emission which becomes predominant at the low frequencies, below about 0.1 F sub P
Two-temperature coronal flow above a thin disk
We extended the disk corona model (Meyer & Meyer-Hofmeister 1994; Meyer, Liu,
& Meyer-Hofmeister 2000a) to the inner region of galactic nuclei by including
different temperatures in ions and electrons as well as Compton cooling. We
found that the mass evaporation rate and hence the fraction of accretion energy
released in the corona depend strongly on the rate of incoming mass flow from
outer edge of the disk, a larger rate leading to more Compton cooling, less
efficient evaporation and a weaker corona. We also found a strong dependence on
the viscosity, higher viscosity leading to an enhanced mass flow in the corona
and therefore more evaporation of gas from the disk below. If we take accretion
rates in units of the Eddington rate our results become independent on the mass
of the central black hole. The model predicts weaker contributions to the hard
X-rays for objects with higher accretion rate like narrow-line Seyfert 1
galaxies (NLS1s), in agreement with observations. For luminous active galactic
nuclei (AGN) strong Compton cooling in the innermost corona is so efficient
that a large amount of additional heating is required to maintain the corona
above the thin disk.Comment: 17 pages, 6 figures. ApJ accepte
That Elusive Elasticity: A Long-Panel Approach To Estimating The Price Sensitivity Of Business Capital
The sensitivity of business capital formation to its user cost plays a key role in the analysis of many economic issues. Although this elasticity has been the subject of an enormous number of studies, a consensus remains elusive. We develop an estimation strategy that exploits panel data in an original way and avoids several pitfalls - difficult-to-specify dynamics, transitory time-series variation, and positively sloped supply schedules - inherent in investment equations that can bias the estimated elasticity. Results are based on an extensive panel containing 1,860 manufacturing and non-manufacturing firms. Our model generates a precisely estimated user cost elasticity of approximately 0.40. The method developed here may prove useful in estimating other structural parameters from panel datasets.
That Elusive Elasticity: A Long-Panel Approach to Estimating the Capital-Labor Substitution Elasticity
The elasticity of substitution between capital and labor features prominently in several areas of economic research. However, a consensus estimate remains elusive. We develop an estimation strategy that filters panel data in an original way and avoids several pitfalls - difficult-to-specify dynamics, transitory time-series variation, and positively sloped supply schedules - inherent in investment equations that can bias the estimated elasticity. Results are based on an extensive panel containing 1,860 manufacturing and non-manufacturing firms. Our model generates a precisely estimated elasticity of approximately 0.40. The method developed here may prove useful in estimating other structural parameters from panel datasets.
Phase Diagram for Ultracold Bosons in Optical Lattices and Superlattices
We present an analytic description of the finite-temperature phase diagram of
the Bose-Hubbard model, successfully describing the physics of cold bosonic
atoms trapped in optical lattices and superlattices. Based on a standard
statistical mechanics approach, we provide the exact expression for the
boundary between the superfluid and the normal fluid by solving the
self-consistency equations involved in the mean-field approximation to the
Bose-Hubbard model. The zero-temperature limit of such result supplies an
analytic expression for the Mott lobes of superlattices, characterized by a
critical fractional filling.Comment: 8 pages, 6 figures, submitted to Phys. Rev.
Outbursts from IGR J17473-2721
We have investigated the outbursts of IGR J17473-2721. We analyzed all
available observations carried out by RXTE on IGR J17473-2721 during its later
outburst and as well all the available SWIFT/BAT data. The flux of the latter
outburst rose in ~ one month and then kept roughly constant for the following ~
two months. During this time period, the source was in a low/hard state. The
source moved to a high/soft state within the following three days, accompanied
by the occurrence of an additional outburst at soft X-rays and the end of the
preceding outburst in hard X-rays. During the decay of this soft outburst, the
source went back to a low/hard state within 6 days, with a luminosity 4 times
lower than the first transition. This shows a full cycle of the hysteresis in
transition between the hard and the soft states. The fact that the flux
remained roughly constant for ~ two months at times prior to the spectral
transition to a high/soft state might be regarded as the result of balancing
the evaporation of the inner disk and the inward accretion flow, in a model in
which the state transition is determined by the mass flow rate. Such a balance
might be broken via an additional mass flow accreting onto the inner disk,
which lightens the extra soft outburst and causes the state transition.
However, the possibility of an origin of the emission from the jet during this
time period cannot be excluded. The spectral analysis suggests an inclined XRB
system for IGR J17473-2721. Such a long-lived preceding low/hard state makes
IGR J17473-2721 resemble the behavior of outbursts seen in black hole X-ray
binaries like GX 339-4.Comment: A&A in pres
- …