7 research outputs found

    Steviol glycosides profile in Stevia rebaudiana Bertoni hairy roots cultured under oxidative stress-inducing conditions

    No full text
    The ability to synthesize particular steviol glycosides (SvGls) was studied in Stevia rebaudiana Bertoni hairy roots (HR) grown in the light or in the dark under the influence of different osmotic active compounds. Manipulation of culture conditions led to changes in the morphology and growth rate of HR, as well as to an increase in oxidative stress manifested as an enhancement in endogenous hydrogen peroxide concentration in the cultured samples. The highest level of H2O2 was noted in HR cultured under light or in the medium with the highest osmotic potential. This correlated with the highest increase in the expression level of ent-kaurenoic acid hydroxylase, responsible for the redirection of metabolic route to SvGls biosynthesis pathway. An analysis of transcriptional activity of some UDPglucosyltransferase (UGT85c2, UGT74g1, UGT76g1) revealed that all of them were upregulated due to the manipulation of culture conditions. However, the level of their upregulation depended on the type of stress factor used in our experiment. Analysis of SvGls content revealed that HR grown under all applied conditions were able to synthesize and accumulate several SvGls but their concentration differed between the samples across the different conditions. The level of rebaudioside A concentration exceeded the content of stevioside in HR in all tested conditions. Concomitantly, the presence of some minor SvGls, such as steviolbioside and rebaudioside F, was confirmed only in HR cultured in the lowest osmotic potential of the medium while rebaudioside D was also detected in the samples cultured in the media supplemented with NaCl or PEG.Key Points● Several steviol glycosides are synthesized in hairy roots of S. rebaudiana.● Light or osmotic factors cause enhancement in oxidative stress level in hairy roots.● It correlates with a significant increase in the level of KAH expression.● UGTs expression and steviol glycosides content depends on culture conditions

    Arbuscular mycorrhiza effects on plant performance under osmotic stress

    No full text
    At present, drought and soil salinity are among the most severe environmental stresses that affect the growth of plants through marked reduction of water uptake which lowers water potential, leading to osmotic stress. In general, osmotic stress causes a series of morphological, physiological, biochemical, and molecular changes that affect plant performance. Several studies have found that diverse types of soil microorganisms improve plant growth, especially when plants are under stressful conditions. Most important are the arbuscular mycorrhizal fungi (AMF) which form arbuscular mycorrhizas (AM) with approximately 80% of plant species and are present in almost all terrestrial ecosystems. Beyond the well-known role of AM in improving plant nutrient uptake, the contributions of AM to plants coping with osmotic stress merit analysis. With this review, we describe the principal direct and indirect mechanisms by which AM modify plant responses to osmotic stress, highlighting the role of AM in photosynthetic activity, water use efficiency, osmoprotectant production, antioxidant activities, and gene expression. We also discuss the potential for using AMF to improve plant performance under osmotic stress conditions and the lines of research needed to optimize AM use in plant production.The authors thank CONICYT, Chile, for the financial support through FONDECYT 1170264 (P. Cornejo), FONDECYT 1161326 (P. Cartes) and scholarship for Doctoral Thesis, Grant No. 21161211 (C. Santander).Peer Reviewe

    Arbuscular mycorrhiza effects on plant performance under osmotic stress

    No full text
    corecore