4,161 research outputs found
Swelling of acetylated wood in organic liquids
To investigate the affinity of acetylated wood for organic liquids, Yezo
spruce wood specimens were acetylated with acetic anhydride, and their swelling
in various liquids were compared to those of untreated specimens. The
acetylated wood was rapidly and remarkably swollen in aprotic organic liquids
such as benzene and toluene in which the untreated wood was swollen only
slightly and/or very slowly. On the other hand, the swelling of wood in water,
ethylene glycol and alcohols remained unchanged or decreased by the
acetylation. Consequently the maximum volume of wood swollen in organic liquids
was always larger than that in water. The effect of acetylation on the maximum
swollen volume of wood was greater in liquids having smaller solubility
parameters. The easier penetration of aprotic organic liquids into the
acetylated wood was considered to be due to the scission of hydrogen bonds
among the amorphous wood constituents by the substitution of hydroxyl groups
with hydrophobic acetyl groups.Comment: to be published in J Wood Science (Japanese wood research society
The re-emission spectrum of digital hardware subjected to EMI
The emission spectrum of digital hardware under the influence of external electromagnetic interference is shown to contain information about the interaction of the incident energy with the digital circuits in the system. The generation mechanism of the re-emission spectrum is reviewed, describing how nonlinear effects may be a precursor to the failure of the equipment under test. Measurements on a simple circuit are used to demonstrate how the characteristics of the re-emission spectrum may be correlated with changes to the digital waveform within the circuit. The technique is also applied to a piece of complex digital hardware where Similar, though more subtle, effects can be measured. It is shown that the re-emission spectrum can be used to detect the interaction of the interference with the digital devices at a level well below that which is able to cause static failures in the circuits. The utility of the technique as a diagnostic tool for immunity testing of digital hardware, by identifying which subsystems are being affected by external interference, is also demonstrated
Experimental confirmation of the low B isotope coefficient in MgB2
Recent investigations have shown that the first proposed explanations of the
disagreement between experimental and theoretical value of isotope coefficient
in MgB2 need to be reconsidered. Considering that in samples with residual
resistivity of few mu-Ohm cm critical temperature variations produced by
disorder effects can be comparable with variations due to the isotopic effect,
we adopt a procedure in evaluating the B isotope coefficient which take account
of these effects, obtaining a value which is in agreement with previous results
and then confirming that there is something still unclear in the physics of
MgB2.Comment: 8 pages, 3 figures Title has been changed A statement has been added
in page 7 of the pdf file "Finally we would..." Reference 21 has been added
Figure 1 anf Figure 2 have been change
The Environment for Application Software Integration and Execution (EASIE) version 1.0. Volume 4: System installation and maintenance guide
The Environment for Application Software Integration and Execution (EASIE) provides both a methodology and a set of software utility programs to ease the task of coordinating engineering design and analysis codes. This document provides necessary information for installing the EASIE software on a host computer system. The target host is a DEX VAX running VMS version 4; host dependencies are noted when appropriate. Relevant directories and individual files are identified, and compile/load/execute sequences are specified. In the case of the data management utilities, database management system (DBMS) specific features are described in an effort to assist the maintenance programmer in converting to a new DBMS. The document also describes a sample EASIE program directory structure to guide the program implementer in establishing his/her application dependent environment
Limitations in cooling electrons by normal metal - superconductor tunnel junctions
We demonstrate both theoretically and experimentally two limiting factors in
cooling electrons using biased tunnel junctions to extract heat from a normal
metal into a superconductor. Firstly, when the injection rate of electrons
exceeds the internal relaxation rate in the metal to be cooled, the electrons
do no more obey the Fermi-Dirac distribution, and the concept of temperature
cannot be applied as such. Secondly, at low bath temperatures, states within
the gap induce anomalous heating and yield a theoretical limit of the
achievable minimum temperature.Comment: 4 pages, 4 figures, added Ref. [6] + minor correction
- …
