
jill;.547-1'21-i,a .yTD
NASA-TM-100576 19880014801

NASA Technical Memorandum 100576

THE ENVIRONNENTFOR APPLICATION SOFTWARE

INTEGRATION AND EXECUTION (EASIE) VERSION 1.0

VOLUMEIV

SYSTEM INSTALLATION AND MAINTENANCEGUIDE

iv- ,"'_ '2_ "?"
' _-;'_; i _"_':-?.....'-"_-'._."_"

DONALD P. RANDALL

KENNIE H. JONES -:oTro,_:;,/.: , "
LAMRENCE F. ROI_ELL

.__OT _O 1'_ 71_L_ ; 2i:_. - t ',_12_ ".;2<32.'.

April 1988

[,. , _. . .,

, . ; i t_TSEf,,RCI'!CEi',_TER
. T_i;,!_Y _!!.5_\

i_'4, VIRGIN Ik

Nahonal Aeronaulmcs and
Space Administration

LangleyResearchConfer
Hampton,Virginia23665-5225

https://ntrs.nasa.gov/search.jsp?R=19880014801 2020-03-20T06:55:07+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42832276?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PREFACE

The Environment for Application Software Integration and

Execution, EASIE, provides both a methodology and a set of

software utility programs to ease the task of coordinating

engineering design and analysis codes. The need for such

techniques and tools has stemmed from the computer-aided design

and engineering activities within the Space Systems Division

(SSD) at the Langley Research Center. In SSD, the Vehicle

Analysis Branch (VAB), with emphasis on advanced transportation

systems, and the Spacecraft Analysis Branch (SAB), with emphasis

on advanced spacecraft, share a common need to integrate many

stand-alone engineering analysis programs into coordinated,

quick-turnaround, user-friendly design systems. In particular,

the most needed capabilities include easy selection of

application programs, quick review and modification of program

input/output data, and logging of the actual steps that were

executed during the study. Although the application programs

used by VAR and SAB differ, the design methods used by their

engineers are quite similar, and great efficiencies can be gained

by providing a computer "environment" that provides the

capahilities mentioned above.

EASIE is both a user interface and a set of utility programs

which support rapid integration and execution of programs about a

central relational database. In general, the EASIE system

addresses the needs of four different classes of people who will

be involved in the buildup of an engineering design system.

Certain individuals may serve in more than one of these roles,

but the following terms will help to clarify several distinct

activities associated with the EASIE system.

The first classification represents the engineer/designer/

analyst. This group conducts the design study through the

execution of modeling and analysis programs and the generation of

data required to evaluate the design against its objectives.

EASIE documentation will refer to this group as "EASIE system

users" or, more often, as "users." In general, these users are

only interested in executing programs already installed into an

EASIE design system.

A second group aided by EASIE will be referred to as

"application programmers." These programmers/engineers are

responsible for the development and improvement of modeling and

analysis programs used in the engineering design process. They

are the experts with respect to particular application programs

and can define the input and output variables. This definition

must be done before inclusion of a program with others in the

integrated system.

The third group can be referred to as "program

implementers," since their function is to provide an environment

where all the software tools work together with a minimum of

effort. These people will use information provided by the

application programmers and will install or modify the programs

in an EASIE system by creating appropriate data constructs in the

database and locating files where needed by the EASIE executive.

ii

The fourth classification is that of "design team leader" or

"design manager." This is the individual or group responsible

for identifying parameters important to the design study and for

configuration management of the data as it is produced by the

design team. This design manager must have an overview of the

total data requirements for the analysis process and must be

concerned foremost with the integrity of the data.

With these terms defined, the four volumes of EASIE

documentation can be associated with the groups most likely to

use them. Each of the volumes addresses different aspects of the

support tools, and each is intended to be usable independent of

the others.

Volume I, Executive Overview, provides information about the

f,lnctions, concepts, and historical development of EASIE and

shotJld be read by anyone trying to determine if EASIE would be

beneficial to his work.

Volume II, Program Integration Guide, describes the portion

of the EASIE tools supporting both the integration of application

programs into a central database and the definition of the data

dictionary used during data review and modification. This volume

will be used primarily by the "program implementer" and the

"design manager" in their responsibilities for the actual

installation of appropriate programs into a fully integrated

design system. However, the "application programmer" may also

use tools described in this volume to assist in the documentation

of input/output variables for the application program.

iii

Volume Ill, Program Execution Guide, describes the portion

of the EASIE tools supporting the selection and execution of

application programs, building of menus, and editing of program

data. This volume will be of foremost importance to the "users"

who wil] perform design studies. In addition, the "program

implementers" will find the sections concerning the construction

of application-dependent procedures helpful. Finally, this

document will also be used by the "design manager" for reviewing

data and design activities.

Volume IV, System Installation and Maintenance Guide,

describes the procedure of loading the EASIE system onto a

computer. It also gives some insight into the hardware and

software dependencies of the EASIE code. This, most likely, will

he needed by the "program implementer" to familiarize himself

with the directory structure and location of the various EASIE

components. Although the design of EASIE is intended to reduce

the system dependencies, this version nevertheless reflects in

several ways the current implementation using the Relational

Information Management (RIM*) database management system and the

VAX/VMS + operating system.

*Trademark of Boeing Computer Services

+
Trademark of the Digital Equipment Corporation

iv

TABLE OF CONTENTS

Section Page

PREFACE .. i

LISTS OF FIGURES AND TABLES vi

l.O INTRODUCTION ...]

2.0 EASIE HIERARCHY 3

3.0 EASIE PROGRAM INTEGRATION 6

4.0 EASIE UTILITIES 13
4.1 Easie Executive Initialization 13
4.1.1 Executive System Dependence 16
4.1.2 Terminal Independence 17
4.1.3 Use .. 18
4.2 Data Management Utilities 19
4.2.1 System Library Processor 19
4.2.2 Reviewer .. 23
4.2.3 Conversion To Another DBMS 23

5.0 INSTALLATION .. 27

6.0 MAINTENANCE ... 29

APPENDIX A EASIE FILE EXTENSIONS A-1

APPENDIX B COMMAND FILE FOR AUTOMATING
APPLICATION PROGRAM ENVIRONMENT SETUP..B-I

APPENDIX C EXECUTIVE LINK COMMAND FILE C-1

APPENDIX D INSTALLATION TAPE BACKUP LISTING D-I

APPENDIX E BUILD EASIE EXECUTABLES COMMAND FILE...E-I

REFERENCES

ABSTRACT

LIST OF FIGURES

Figure Page

1 EASIE Software File Hierarchy 5

2 Recommended Application Program File Structure 11

3 Menu-Driven Application Program File Structure 12

4 Self-Contained Application Program File Structure..12

LIST OF TABLES

Table Page

I EASIE Executive FORTRAN Modules 14

2 Sample Output of Program GETDESC 22

vi

1.0 INTRODUCTION

The Environment for Application Software Integration and

Execution (EASIE) tools include a program executive and a

collection of data management utilities designed to provide a

consistent environment for the integration and execution of

application software. The purpose of this document is to supply

the programmer charged with implementing or maintaining the EASIE

software with the required information for performing this

task. This document may also provide additional insight to an

engineer/designer/analyst wishing more detailed understanding of

the organization of the EASIE software tools. When additional

information on the utilization of the EASIE software tools is

required, the other three volumes of EASIE documentation [1, 2,

and 3] in this series should be consulted.

The computing environment for developing the EASIE software

tools was a DEC VAX 11/785 running VMS 4.4. When this software

is being installed, it is very helpful to be familiar with

VAX/VMS utilities and other VAX/VMS features such as the

hierarchial file structure, file descriptions and extensions,

user-defined symbols and logicals, and command procedures. The

EASIE software is written entirely in DEC FORTRAN 77, using

standard VAX/VMS compile, load, and execute processes including

the use of the DEC FORTRAN "INCLUDE" files and the creation and

use of object libraries.

In addition to functioning as an EASIE software installation

guide, this document endeavors to address programming issues not

addressed in the other EASIE documentation [1, 2, and 3] and is

organized into several sections relating to different aspects of

the EASIE software utilities. Section 2 details the hierarchical

file organization employed to house the EASIE tools. Section 3

identifies alternatives for setting up an application programming

environment utilizing the sample problems contained in Volumes II

and Ill. Section 4 provides more detail on the modules that

comprise the individual EASIE software components. Section 5 is

an explanation of the task of installing EASIE from the supplied

installation package. Section 6 provides the information for

instructing the engineer/designer/analyst for making additions to

the EASIE system.

This document can stand alone in its description of the

EASIE software installation (section 5); however, some prior

knowledge of the contents of Volumes II and Ill will be helpful

throughout the other sections, since terms and concepts from the

other EASIE volumes are used here with little or no explanation.

2.0 EASIE HIERARCHY

The organization of the EASIE software takes advantage of

the VAX/VMS hierarchial file structure. Although each

installment has flexibility in tailoring the placement of both

the EASIE tools and any application programs to be associated

with the system, the organization shown in Figure 1 is

recommended. The examples used to illustrate the integration and

execution environments described in Volumes II and Ill are

presented in this figure and referenced throughout this

document. In describing the various levels of the EASIE

hierarchy, familiarity with standard VAX/VMS file specifications

is assumed.

The top level of the hierarchy is the AIDE (a former alias

For EASIE) directory. Beneath this directory are the major

subdirectories that comprise EASIE. The BUILD DICT subdirectory

contains the utilities that are used in constructing the data

dictionary and the input/output templates within an associated

data dictionary database. The REVIEWER utility for editing

program input and output resides in the REVIEW subdirectory. The

EASIE executive software resides in the PROG subdirectory. The

PROC, HELP, and DB subdirectories are repositories for files

needed while running the executive. The PROC subdirectory

contains DCL command files referenced from within the EASIE

executive. The text files within the HELP subdirectory are

accessed while exercising the on-line HELP facility available in

the executive. Finally, the DB subdirectory includes text files

containing the major executive command menus. This subdirectory
3

also contains the list of master workspaces [3] accessible in

this Version 1.0 of EASIE. The major files in each of these

subdirectories are briefly described in Section 4 of this

document.

The remaining three subdirectories, EXAMPLE, EXMENU, and

EXSIMPLE are included to illustrate the alternative methods for

integrating application programs into this hierarchy. The

purpose and contents of these three subdirectories are discussed

in Section 3.

4

EASIETAPE.DIR)

I

BUILD_DICT.DIR
o utilities for constructing the

data dictionary and the input/
output templates

REVIEW.DIR

o REVIEWER utility for editing
program input/output

PROG.DIR
o executive software

PROC.DIR
e DCL command files referenced

from within executive

HELP.DIR

o text files accessed by on-line HELP
facility available in executive

DB.DIR

o text files containing the major
executive command menus

e list of master workspaces

[EXAMPLE.DIR) (See Figure 2)

[EXMENU.DIR 1 (See Figure 3)

[EXSIMPLE.DIR) (See Figure 4)

Figure 1. - EASIE Software File Hierarchy

3.0 EASIE PROGRAM INTEGRATION

The techniques for integrating systems of application

programs into EASIE are detailed in the Program Integration Guide

[2]. The intent of this section is to present several approaches

for organizing the application-program-dependent files into a

structure compatible with EASIE. The subdirectories EXAMPLE,

EXMENU, and EXSIMPLE, shown in Figure I, will serve as

illustrations for various ways to organize files and set up the

communication link between the user, EASIE, and the application

program areas. The mechanism for specifying the necessary data

path is the EASIE workspace [3]. The utilization of the

workspace as related to the above three illustrative examples is

discussed in this section. Finally, an automated tool, in the

form of a VAX/VMS command file, for constructing an EASIE

subdirectory structure is detailed.

The EASIE tools key on the VAX/VMS file extensions when

performing specified operations. These files come in pairs, an

object file and an associated description fi|e. For example, a

workspace file, a configuration database file, and an application

executable file must all be accompanied by a corresponding

description file. A complete list of the relevant EASIE file

extensions is contained in APPENDIX A. For the purpose of

identifying categories of EASIE files, this document employs the

file extension and the VAX/VMS "wildcard" character asterisk

("*"). The "*" is used to designate one or more application

program names, configuration names, or other user-supplied names.

6

The recommended approach for integrating a suite of

application programs into EASIE is illustrated in the EXAMPLE

subdirectory shown in Figure 2. An examination of the files in

this directory and its subordinate subdirectories shows that the

EASIE data management utilities [2] have been run and that the

necessary preparations for interfacing with the executive [3]

have been performed. The required files have been organized into

four subdirectories: DICTNRY, SOURCE, PROG, and CFG.

The DICTNRY subdirectory contains the data dictionary

database (in the form of the three RIM files, DATADB*.DAT,

where "*" is I, 2, or 3).

The source code, object code, command files, and other

utilities for compi]ing and linking the application programs

reside in the subdirectory SOURCE. It should be noted that the

database interface routines generated by the EASIE MAKDICT

utility [2] are also stored in the subdirectory SOURCE. The

EASIE code generator named these routines *IN.FOR for input and

*OUT.FOR for output together with the DEC FORTRAN "INCLUDE" files

*IN.COMMON and *OUT.COMMON where "*" represents the application

program name.

The application program executables *.EXE and the EASIE

REVIEWER [2] files *IN.REV or *OUT.REV reside in the PROG

subdirectory. The required description files [3] for the

applications program *.APPLD and the REVIEWER files *.TPLD also

exist in the PROG subdirectory.

The CFG subdirectory contains the "master" configurations

*.DIR that may be copied to a user's area for execution. Each

master configuration is described by an *.CFGD description

file. The remaining file in the CFG subdirectory is the

workspace [3] which points to the master configurations and

application programs.

The file PROGRAM.PGD in the PROG suhdirectory is required by

the EASIE executive when executing user application programs.

The file is created hy the SYSTEM LIBRARY PROCESSOR in producing

the PROGRAM LIBRARY [2]. The EASIE executive needs this file to

identify the method and/or steps necessary in exercising an

application program.

The final step in preparing an EASIE execution environment

is to update the master workspace file, MASTER WS.DAT, which

resides in the [.AIDE.DB] directory (figure I). In this

instance, the entry of EXAMPLE for USER ID is added to the

MASTER WS.DAT file, in order to identify EXAMPLE as a legal EASIE

ID [3] and to locate the corresponding EXAMPLE.WS workspace.

With the organization and specification of the execution

environment now complete, an EASIE session using EXAMPLE as the

USER ID: will initiate EASIE execution from a working area, copy

a master configuration {from the [.AIDE.EXAMPLE.CFG]

suhdirectory), and begin issuing EASIE commands.

An alternate method for structuring the integration of a

suite of application programs into an EASIE execution environment

is shown in the EXMENU directory listed in figure 3.

In this organization, only a single subdirectory named CFG is

required. The EXMENH approach utilizes the EASIE executive

facilities for procedures and menus. The subdirectory

[.EXMENU.CFG] contains the required procedures *.PROC, procedure

descriptions *.PROCD, and the menu files *.PROC *. It is

unnecessary to locate application programs in source or

executable format and configurations in this area because the

actual location of these files is specified in the workspace,

EXMENU.WS. In essence, the EXMENIJ ID appears to he used to log

into a separate design system. The EXMENU IO only provides menus

and pointers to other programs contained in other ID areas. As

in the previous paragraph on the ID EXAMPLE, the final step is to

update the master workspace file, MASTER WS.DAT, to reflect

the new execution environment. An EASIE session using EXMENU as

the USER ID: will run EASIE from a working area choosing EXMENU

as the desired design system.

A partial implementation of another method for structuring

the integration of a suite of application programs into an EASIE

execution environment is described in the EXSIMPLE subdirectory

shown in Figure 4. The files in this area represent the results

from exercising a simple integration example of EASIE Volume II

Program Integration Guide [2]. There are no subdirectories under

EXSIMPLE, implying that all programs, configurations, and

REVIEWER files reside in this single subdirectory. The

responsibility for creating the required description files for

the programs, configurations, and REVIEWER files is assigned by

the design manager at each installation. The design manager must

also create the DATADB*.DAT database files. When these functions

are completed, the EXSIMLE.DIR files may be copied to another

work area. In this manner, the engineer/designer/analyst may

exercise EASIE in a self-contained environment. This alternative

method for structuring the EASIE execution environment is not

suited to multiple user environments or multiple

configurations. When exercising EASIE in this environment,

entering a carriage return [CR] in response to the "ID" prompt

produces a proper workspace in the user's own area. (WARNING -

The EASIE engineer/designer/analyst should be warned that using

this approach, configuration directories function as both master

and user configurations because the master and user areas are the

same.)

The preceding paragraphs and figures may appear to depict a

complex program integration and execution environment. However,

the integration process is performed only once for each suite of

application programs. Also, this effort is seen only when the

EASIE software is installed and the details of the organization

are transparent to the engineer/designer/analyst.

In an effort to ease the EASIE software installment, a

VAX/VMS command file, AIDEINIT.COM, is provided to automate the

creation of the EASIE setup as depicted in the EXAMPLE

subdirectory. Invoking the command file AIDEINIT.COM before

beginning the integration process will facilitate proper file

placement. The functions of this command file include prompting

for EASIE ID [3], creating directory and subdirectories as

prescribed above, generating an empty data dictionary database,

updating the master workspace file, and producing a workspace

file to be used with this environment.

The command file is listed in APPENDIX B. VAX/VMS symbols

are utilized wherever possible to eliminate the drawback of hard-

wired file specifications. The designated symbols are identified

and defined in Section 5 of this document.

I0

EXAMPLE.DIR)

DICTNRY.DIR

o data dictionary database
(RIM files)

SOURCE.DIR
o source code
o object code
o command files
o utilities for compiling and linking

the application programs
o database interface routines

generated by the EASIE MAKDICT
utility

PROG.DIR

o application program executables
e template files for REVIEWER
o description files for application

programs and REVIEWER files

CFG.DIR
o master configuration files
o description files for master files
o workspace files

Figure 2. - Recommended Application Program File Structure

11

EXMENU.DIR)

CFG.DIR
o utilizes the EASIE

executive facilities for
procedures and menus

Figure 3. - Menu-Driven Application Program File Structure

EXSIMPLE.DIR
o no subdirectories
o the implementer is responsible for

creating the required description files
o application source code
o application object code
o data dictionary/template

library database
o schema
o RIM database files

Figure 4. - Self-Contained Application Program File Structure

12

4.0 EASIE UTILITIES

This section presents the individual EASIE executive and

data management utilities from a programmer's viewpoint. The

component files are identified, and the compile/load sequences

are specified. When appropriate, terminal-, DBMS-, and VAX/VMS-

specific-dependencies are discussed.

4.1 EASIE Executive Initialization

The files comprising the EASIE executive reside in the

[.AIDE.PROG] directory. The files in this area include the DEC

FORTRAN source modules *.FOR, the FORTRAN "INCLUDE" files *.INC,

the compiled object code files *.OBJ, the generated object

libraries *.OLB, the compile and link command files COMPILE.COM

and LINK.COM, and the executable task image MASTER.EXE.

The required FORTRAN source files are listed and briefly

described in Table 1. The compilation of these modules requires

no special compiler options. A sample command file for linking

the EASIE executive is listed in APPENDIX C. Notice that this

command file employs VAX/VMS symbols in order to eliminate hard-

wired pathnames.

13

TABLE 1. - EASIE EXECUTIVE FORTRAN MODULES

NAME DESCRIPTION

AIDEUTIL Collection of utilities for performing
type conversions and manipulating VAX/VMS
file specifications.

BATCH Routines for controlling the executive's
background processing capabilities.

DISPLAY Routines for listing executive menus and
user text files to terminal.

EDTPL Routines designed to permit user template
editing. At the present time, these
routines are incompatible with other EASIE
data management utilities.

ERRORSUBS Routines for categorizing executive errors
and outputting messages to user's log
and/or terminal.

FASTAIDE Routines for initializing executive and
controlling its operation.

GET Routines for controlling executive
functions normally associated with the
EASIE procedure facility.

GETMENU Routines for processing user-supplied
menus associated with user-supplied
procedures.

GLOBS Routines for reading, writing, and
updating EASIE workspace files.

INTERACT Routines used for communicating with users
such as issuing prompts and soliciting
responses.

INTERPRET Routines for parsing user input and
validating user-supplied information.

14

TABLE 1. - (continued)

NAME DESCRIPTION

RASTER EASIE executive driver program.

PERMENU Module of routines to control selection of
executive menus and other functions such
as listing configurations or applications.

PUTTRM Program that prompts the user for the
terminal type.

RESPPROCS Module containing the major executive
command routines.

RIMSUB Routines communicating with the user's
execution environment. These utilities do
not communicate with resident DBMS.

SLOG Utilities for modifying user's login
environment via workspace editing.

SYSUTIL Utility routines for interacting with
VAX/VMS during executive execution.

TEMPSUB Routines controlling such executive
function as "execution" of programs or
procedures or online "help".

TERMINAL Routines for directing limited terminal
independence capabilities.

15

4.1.1 Executive System Dependence

The selection and manipulation of EASIE executive files

depend on the VAX/VMS file specification. The executive is

interfaced to VAX/VMS through standard VAX/VMS system interface

routines. In some cases, a VAX/VMS utility is used directly such

as invoking the LI_$FIND FILE to identify configurations,

applications, workspaces, and procedures. In other instances,

LIB$SPAWN is employed to execute a VAX/VMS command string for

such functions as invoking the ED editor or executing an

application.

In an effort to aid in the migration of the EASIE executive

to another host, the VAX/VMS dependencies have been isolated to

the extent possible. The vast majority of VAX/VMS dependencies

are consolidated in the two modules, AIDEUTIL.FOR and

SYSUTIL.FOR. There are other VAX/VMS dependencies in some of the

remaining executive source modules, but these should be

relatively easy to identify and correct. These dependencies

usually take the form of creating a VAX/VMS string such as ED to

invoke the editor or RUN/NODEBIJG to execute a program. There may

also he brackets from a VAX/VMS file specification or references

to a VAX/VMS symbol.

Because the EASIE executive invokes standard VAX/VMS

utilities, the user should not redefine any of these utilities

via symbol definitions.

16

4.1.2 Terminal Independence

The EASIE utilities provide a very limited capability for

terminal independence. The default terminal is a generic

alphanumeric terminal. In its present form, terminal

independence implies "erasing" the screen and text positioning

for the Tektronix 401x series terminals and only clearing the

screen for the Tektronix 41xx series terminals.

The terminal-independent routines reside in TERMINAL.FOR.

These routines are unconditionally loaded by the executive but

are linked as an object library by other EASIE utilities. For

Tektronix 401x terminals, the proprietary PLOT-IO Termina|

Control System (TCS) library is required. A minimal LaRC-

developed Tektronix 41xx library is included as part of the

installation package to support this class of terminal. To add

another class of terminal, edit TERMINAL.FOR and include the

device-dependent libraries for the new devices required.

The principal mechanism for communicating the terminal type

throughout the software is a file named AIDExx.TRM where 'xx' is

the VAX/VMS expansion of the 'TT' symbol associated with the

user's job. This file may he written to the user's working area

by the program PUTTRM.EXE which is executed from the procedure

TOAIDE:[PROC]AIDE.COM. The executive calls a routine TINIT

(within TERMINAL.FOR) to read an existing terminal file

(AII)Exx.TRM). Integrated programs and the REVIEWER employ this

technique via the routine PINIT in file TERMINAL.FOR. An

installation using the EASIE software may choose to exercise

PINIT in a similar manner for any of their application programs.

17

4.1.3 Use

The EASIE executive may be invoked by entering

RUN TOAIDE:[PROG]MASTER.EXE

The installation process described in section 5 illustrates an

alternate method of execution whereby a VAX/VMS symbol, AIDEX, is

used to run the command procedure TOAIDE:[PROC]AIDE.COM, which in

turn executes the above command line and performs the terminal

selection process. In either case, TOAIDE is a symbol used to

specify a partial pathname.

The engineer/designer/analyst user should invoke the EASIE

executive as described above from a working area that is to

contain the relevant configurations (stored as subdirectories and

identified by the *.CFGD description files). During execution,

EASIE creates several temporary files using a naming convention

similar to that discussed in the previous section. The temporary

files are prefixed by 'T$' and identified by the appropriate file

extension (APPENDIX A). In order to permit multiple users to

simultaneously execute EASIE from the same working area, the

VAX/VMS symbol 'TT' corresponding to the user's terminal is

expanded and added to the file name. For example, the temporary

log file may have a name such as 'TSTTA7.LOG'.

The EASIE executive deletes the temporary files upon logout

except the *.TRM and *.LOG files remain. If the executive

terminates abnormally, other 'T$' files may reside in the working

area. If an abort occurs during the execution of an application

program, the directory pointer may be positioned inside a

configuration. In order to remedy this problem, reposition the

18

directory pointer to the working area and delete the temporary

files.

4.2 Data Management Utilities

The purpose of this section is twofold. The first is to

document the location and function of both the SYSTEM LIBRARY

PROCESSOR, software used to construct and manipulate the SYSTEM

LIBRARY (including DATA DICTIONARY, TEMPLATE LIBRARY, and PROGRAM

DICFIONARY), and the REVIEWER, software used to review/modify

data [2]. The second is to explain modifications necessary for

use of these utiIities with a DBMS other than RIM [4].

4.2.1 SYSTEM LIBRARY PROCESSOR

The files comprising the SYSTEM LIBRARY PROCESSOR (executed

via the VAX/VMS symbol 'RUNI)ICT') reside in the [.AIDE.BUILD

DICT] directory. Linking the processor is accomplished through

execution of the command procedure MAKDICT.COM producing an

executable task image MAKDICT.EXE. Examination of this command

procedure reveals that the object files (and their associated

source files) are required by the processor. The processor

currently stores the SYSTEM LIBRARY in a RIM database and can

interact with it both to produce a database containing a schema

only and to construct a FORTRAN code to retrieve/replace data

from/in the database.

An input file to be read by interactive RIM is created by

the module MAKSCHEMA.FOR called by selecting the BS {Build

Schema) command. The input file created contains commands to

interactive RIM for creating the relations defined in the DATA

DICTIONARY using the default database name, DATADB. The database

name may be changed by editing this file before execution.

19

The FORTRAN code produced by the SYSTEM LIBRARY PROCESSOR

(the BF command) is written by the modules FORMAT.FOR and

FORMRIM.FOR. The module FORMAT.FOR does the bulk of the work of

transferring data to/from variables from/to a single integer

array. The module FORMRIM.FOR writes the calls to the RIM

FORTRAN interface library. Resident within the processor is a

user-supplied parameter for the number of characters per machine

word to be contained in the storage array (input as the response

to the processor's first prompt). This parameter is required

because DBMS's (RIM, for example) may not be totally machine

independent. On a VAX, RIM character attributes are packed into

the storage array using four characters per word. This parameter

controls how character attributes will be packed by FORMAT.FOR.

The [.AIDE.BUILD DICT] directory contains two files which

create the SYSTEM LIBRARY Schema. The file BUILD.DAT contains

commands to interactive RIM for the schema construction. The

file BUILDDICT.COM is a command procedure to copy BUILD.DAT into

the default directory of the user, execute interactive RIM, and

input the file BUILD.DAT thus creating a schema-only database in

the default directory.

Program GETDESC.OBJ (source file GETDESC.FOR), when linked

with the RIM Library, produces an executable that reads the Data

Dictionary and generates an output File containing all

parameters/attributes for each relation, including their names,

descriptions, and units. This is useful as a quick overview of

the database schema contents (table 2).

2_

A11 FORTRAN modules described above are written in ANSI

standard FORTRAN V with the exception of variahle names exceeding

the 6 character ANSI standard. The processor will successfully

compile and link on both the VAX/VMS and PRIME/PRIMOS systems

with only one required modification. The FORTRAN input and

output unit numbers are assigned through a data statement in the

main program (IN=5 for VAX and IN=I for PRIME; lOUT=6 for VAX and

IOUT=I for PRIME). A modification to these values may be

required for conversion to another machine. Dimensions, though

large in some cases, are usually assigned as parameter

statements, and some may be reduced for use on a non-virtual

machine. (However, this is not recommended.)

21

TABLE 2. - SAMPLEOUTPUT OF PROGRAMGETDESC

THE PARAMETERSFOR THE RELATION DIMEN ARE

NAME DESCRIPTION UNIT

LENGTH BOX LENGTH M
WIDTH BOX WIDTH M
HEIGHT BOX HEIGHT M
VOLUME BOX VOLUME M

THE PARAMETERSFOR THE RELATION MODEL ARE

NAME DESCRIPTION UNIT

NAME MODEL NAME
ROTATION MODEL X,Y,Z ROTATIONS RESPECTIVELY DEGREES

THE ATTRIBUTES FOR THE RELATION NODES ARE

NAME DESCRIPTION UNIT

X X COORDINATE M
Y Y COORDINATE M
Z Z COORDINATE M

THE ATTRBUTESFOR THE RELATION FACES ARE

NAME DESCRIPTION UNIT

FACE FACE CONNECTIVITY (NODE I TO 2 TO 3 TO 4 (OR TO i IF 4=0) TO i)

22

4.2.2 REVIEWER

The files comprising the REVIEWER reside in the

[.AIDE.REVIEW] directory. Upon execution of the command

procedure RIMLOD.COM, the source file R4.FOR wil! be compiled and

linked with the RIM library to produce the executable task image

R4.EXE.

The value for number of characters per word resident in the

SYSTEM LIBRARY PROCESSOR is passed to the REVIEWER through the

REVIEWER input file.

Only one VAX dependency is found in the REVIEWER. In the

subroutine RDREV, a call to the VAX system function

LIBSGET FOREIGN returns the name of the REVIEWER input file to

read and optionally the word "PRINT" (if the output is to be

written to a file). For conversion to another machine, this

mechanism must be emulated. Otherwise, the above statements

concerning ANSI FORTRAN V standards, input/output units, and

dimensions apply.

4.2.3 Conversion to Another DBMS

The previous discussion of the SYSTEM LIBRARY PROCESSOR and

the REVIEWER indicates a dependence on the RIM [4] DBMS. Another

version of the EASIE data management tools which employs

Structural Dynamics Research Corporation's PEARL [5] DBMS has

been developed. The intent of this section is to contrast the

RIM and PEARL implementations in the event that another DBMS is

employed.

Several of the modules located in the [.AIDE.BUILD DICT] are

particularly noteworthy for conversion to another DBMS. The

23

processor currently stores the SYSTEM LIBRARY in a RIM database

but may interact with either the RIM or PEARL DBMS.

The SYSTEM LIBRARY PROCESSOR BS command was previously

described as a mechanism for building a RIM input file for

creating relations within the DATA DICTIONARY. Alternatively, an

option of the BS command will call the module MAKPRLSCH.FOR to

create a FORTRAN program that, when linked with SDRC's PEARL

library and executed, will create the schema for the PEARL

database, DATADB. These methods represent two different means of

creating the initial database schema. One method is through

commands to an interactive database manager, and the second

method is by interfacing with a FORTRAN library. One or both of

these modules should serve as a model to create the schema for

other relational DBMS's.

FORTRAN code produced by the SYSTEM LIBRARY PROCESSOR (the

BF command) (written by the modules FORMAT.FOR and FORMRIM.FOR)

may be somewhat database independent provided the DBMS of choice

retrieves/stores data in a manner analogous to RIM and PEARL.

The user-supplied parameter indicating the number of

characters per machine word used in controlling the packing of

character attributes requires further explanation. On a VAX, RIM

character attributes are packed into the storage array using 4

characters per word, while on the CDC Cyber/NOS computer, RIM

character attributes are packed using 10 characters per word.

Using the PEARL DBMS on VAX, character attributes are packed

using 2 characters per word. This parameter may be useful in

conversion to another DBMS.

24

If the DBMS of choice packs relation rows into a temporary

storage array using the same method as RIM and PEARL, it is

possib]e that only FORMRIM.FOR need be modified. If not,

modifications to FORMAT.FOR may be required.

The interface with PEARL was accomplished with no

modifications to either FORMAT.FOR or FORMRIM.FOR because PEARL

is similar to RIM. Instead, an interface library was created

(with few subroutines) to convert RIM subroutine calls to PEARL

calls. Code produced by the processor is then identical for RIM

or PEARL with the exception of number of characters per word. A

program may then be linked with both the RIM-to-PEARL interface

library and the PEARL library in lieu of the RIM library. This

approach is simple and results in no noticeable loss in

performance.

The SYSTEM LIBRARY is stored in a RIM database. If RIM is

not acceptable, conversion to another DBMS should be possible.

All RIM subroutine calls have been isolated in the module RDDICT

and can he replaced by calls to another DBMS. Also, the files

BUILDDICT.COM and BUILD.DAT (residing in the [.AIDE.BUILD DICT]

directory) used in creating the schema-only database must be

edited accordingly to create the SYSTEM LIBRARY schema using

another DBMS.

Conversion of the REVIEWER to another DBMS may be

accomplished through modification of the following subroutines:

DBOPEN

DBCLOSE

RDPARA

RDATT

25

WHRVAL

DB2REV

WRTPARA

WRTATTR

REV2DB

The approach used for the PEARL interface requires no changes to

the REVIEWER. (Instead, the REVIEWER is linked with the RIM-to-

PEARL library and the PEARL library.) An analogous approach may

be possible with other DBMS's.

26

5.0 INSTALLATION

The EASIE installation tape was written on a VAX 11/785

running VMS 4.5. The magnetic tape is 9-track, 1600 BPI and

written with the VAX/VMS BACKUP utility. The BACKUP utility was

utilized because the so-called "SAVESET" preserves the

hierarchical directory structure described in Section 2.

APPENDIX D contains the INSTALLATION TAPE BACKUP listing.

Using BACKUP to read the installation tape, the EASIE

hierarchy is created starting from the current working area where

the directory pointer is positioned. The highest level directory

is EASIETAPE and is referenced in this section using the relative

file specification [.EASIETAPE].

The command file BUILD.COM (APPENDIX E) located in the

.EASIEFAPE directory may be used to generate the required EASIE

executables and sample environments (section 2) positioned

properly within the hierarchy. Before invoking this command

file, editing the symbol definitions in BUILD.COM to conform to

]ocal disk logical name assignments is required. As alluded to

earlier in this document, these symbols are defined to facilitate

moving EASIE from one area or system to another.

The symbol TOAIDE defines a file specification from the

logical disk name to the AIDE subdirectory. The symbolsLOADRIM

and LOADPIO identify the locations of the proprietary RIM and

PLOT-IO TCS libraries, respectively, used by the EASIE

utilities. (The PLOT-IO library used by the executive and the

REVIEWER is not mandatory for Tektronix 41xx series or

alphanumeric terminals. The RIM FORTRAN interface library is

27

required for all EASIE data management utilities.) The USERLIB

symbol identifies the location of the two user libraries

delivered as part of the installation package. By default the

|ibraries are located in the [.EASIETAPE] subdirectory.

The other symbols (RUNRIM, RUNDICT, REVIEW, and AIDEX)

defined in BUILD.COM are not used by the command file. The

utility of these symbols is addressed in the next section. Of

these four symbols, only RUNRIM, which is used to execute

interactive RIM, must be redefined by the installer.

Once the symbols are defined, BUILD.COM runs other command

files (from the appropriate areas) which link the necessary

object modules to build the EASIE components. The implication

here is that these command files do not perform recompilation but

use the object files from the installation tape. If

recompilation is deemed necessary, the individual command files

may he scanned to identify source modules. No special compiler

options are required.

After the symbols are defined and any necessary

recompilations are performed, BUILD.COM may run from the

[.EASIETAPE] subdirectory by issuing the VAX/VMS command:

@BUILO.COM

A listing of this command file is provided in APPENDIX E.

28

6.0 MAINTENANCE

Assuming the instructions from section 5 were performed

successfully, EASIE should now be usable by potential users

wishing to exercise the sample program environment detailed in

- Volume II.

In an effort to aid the engineer/designer/analyst exercising

the EASIE utilities, the symbols RUNRIM, RUNDICT, REVIEW, and

AIDEX, defined by [.EASIETAPE]BUILD.COM, (APPENDIX E), may be

used. The symbols RUNRIM, RUNDICT, REVIEW, and AIDEX are used to

execute interactive RIM, the EASIE data dictionary utilities, the

REVIEWER, and the executive, respectively. The symbols RUNDICT,

REVIEW, and AIDEX use another symbol, TOAIDE, in their

definition. TOAIDE designates the location of the EASIE

hierarchy based on the established logical disk configuration and

should be set when this software is installed. The RUNRIM symbol

is also system dependent and must be defined when the software is

installed.

A recommended approach for defining these symbols is to

imbed their definitions within the system and/or user's "login"

file. In this manner, the symbols are always available to the

EASIE user. Note that entering AIDEX to invoke the executive

actually runs another command file TOAIDE:[PROG]AIDE.COM. This

command file is included with the installation package.

The beginning EASIE user executes EASIE from a working area

and not from the EASIE area. The directory [.EASIETAPE] and the

subordinate subdirectories should be protected from over writing

29

by the design manager/system administrator responsible for

maintaining the EASIE tools. More specifically, the

engineer/designer/analyst should have rights to copy master

configurations and to execute EASIE or applications programs hut

should not be permitted write access to this area. This area

requires modifications only when correcting an error in an EASIE

utility, adding an update, or changing a particular application

environment. The latter case might include such activities as

adding a new application program, editing an old application

program, adding a master configuration, or editing the procedures

and menus used to tailor an existing environment.

By contrast, the engineer/designer/analyst should:

o Ensure that the aforementioned symbols are defined.

o Attach to the area where the user configurations

procedures, and workspaces reside.

n Initiate execution of the desired EASIE qJtility.

o Issue commands as discussed in volumes II and Ill.

One final caution concerns the EASIE executive convention of

"spawning" VMS processes to execute certain commands. Depending

on system dependent parameters, the error message

"EXPRCLM, exceeded subprocess quota"

may abort the executive. If this error occurs, the VAX system

administrator should increase the PRCLM parameter.

3D

APPENDIX A

EASIE FILE EXTENSIONS

NAME DESCRIPTION

APPL APPLICATION PROGRAM

APPLD APPLICATION DESCRIPTION FILE

CFCD CONFIGURATION DESCRIPTION FILE

COM BATCH COMMANDFILE

DIR CONFIGURATION (Also VAX/VMS
Subdirectories)

EXE APPLICATION PROGRAM (Also a
VAX/VMS Executable Image)

LOG EASlE LOG FILE

PROC EASlE PROCEDUREFILE

PROCD PROCEDURE DESCRIPTION FILE

REV EASIE REVIEWER (TEMPLATE) FILE

SAV BATCH OUTPUT FILE

TPL EASlE TEMPLATE FILE

TPLD TEMPLATE DESCRIPTION FILE

UTIL USER-WRITTEN UTILITY FILE

xxxx i "i(th)" MENU FILE ASSOCIATED
WITH PROCEDURE xxxx

WS EASIE WORKSPACEFILE

WSD EASIE WORKSPACEDESCRIPTION
FILE

A-I

APPENDIX B

COMMAND FILE FOR AUTOMATING
APPLICATION PROGRAM ENVIRONMENT SETUP

$HOME : FSDIRECTORY()
$1NQUIRE ID "ENTER EASIE SYSTEM ID "
$STRLEN = F$LENGTH(ID)
$1F (STRLEN .LT. 1) THEN WRITE SYS$OUTPUT "ID MUST BE GT 0
CHARACTERS"
$[F (STRLEN .LT. I) THEN GOTO EXIT
$1F (STRLEN .GT. 8) THEN WRITE SYS$OUTPUT "ID MUST BE LE 8
CHARACTERS"

$1F (STRLEN .GT. 8) THEN GOTO EXIT
$CREATE/DIR TOAIDE:['ID']
$CREATE/DIR TOAIDE:['ID'.CFG]
$CREATE/DIR TOAIDE :['ID'.CFG.MASTER]
$CREATE TOAIDE:['ID'.CFG]MASTER.CFGD
$CREATE/DIR TOAIDE: ['ID'.DICTNRY]
$CREATE/DIR TOAIDE: ['ID'.SOURCE]
$CREATE/DIR TOAIDE:['ID'.PROG]
$TA = FSLOGICAL("TOAIDE")
SLEN = FSLENGTH(TA)
STA = FSEXTRACT(O,LEN-1,TA)
STA = TA+ID+".DICTNRY]"
SWRITE SYS$OUTPUT TA
$SET DEFAULT 'TA'
$COPY TOAIDE:[BUILD DICT]BUILD.DAT *
SRUNRIM
INP BUILD
EXIT
SDELETE BUILD.DAT.*
$1F (STRLEN .EQ. i)THEN B = " "
$1F (STRLEN .EQ. 2) THEN B = " "
$1F (STRLEN .EQ. 3) THEN B = " "
$1F (STRLEN .EQ. 4) THEN B : " "
$1F (STRLEN .EQ. 5) THEN B = " "
$1F (STRLEN .EQ. 6) THEN B = " "
$1F (STRLEN .EQ. 7) THEN B = " "
$1F (STRLEN .EQ. 8)THEN B = ""
$OPEN/APPEND MWS TOAIDE:[DB]MASTER WS.DAT
SWRITE MWS ID,B,"TOAIDE:[" ID ".CF-G'-]"ID " WS"
$CLOSE MWS
$OPEN/WRITE WS TOAIDE:['ID'.CFG]'ID'.WS
'$WRITE WS "USRID ",ID
SWRITE WS "USRLVL I"
SWRITE WS "MENUCMD F"
SWRITE WS "REFCFG"
SWRITE WS "APPLTPL"
SWRITE WS "REFTMPL"
SWRITE WS "APPLTMPLIN"
SWRITE WS "APPLTMPLOUT"
SWRITE WS "REFPCF"

B-1

APPENDIX B

SWRITE WS "CURPROG"

$WRITE WS "WKSP T$"

SWR[TE WS "CURMENU UTILITY SELECTION (MAIN)"
$WRITE WS "CURMENUIDX I"
$WRITE WS "INUNIT 5"
SWRITE WS "OUTIUNIT 6"
SWRITE WS "PRINTLEVL I"
$WRITE WS "HOMEUFD"

SNRITE WS "BASEUFD TOAIDE:[",ID,".CFG]"
$WR[TE WS "PROGUFD TOAIDE:[" ID ".PROG]"
SWRITE WS "MENULIST !,, ' '
$WRITE WS "SEQEXEC F"
SWRITE WS "SEQNUM 0"
$WRITE WS "PROCSP 0"
$WRITE WS "PROCPC 0"
$WR[TE WS "PROCEX F"
$WRITE WS "EMPTYPROCSTACK T"
SWRITE WS "AUTODEFAULT T"
$WRITE WS "EXPROCFILE"
$CLOSE WS
$SET DEFAULT 'HOME'
SEXIT
$EXIT

SWRITE SYS$OUTPUT "EASIE ID NOT ESTABLISHED"
$EXIT

B-2

APPENDIX C

EXECUTIVE LINK COMMAND FILE

SLINK MASTER -
+FASTAIDE -
+RESPPROCS -

" +TEMPSUB -
+INTERACT -
+INTERPRET -
+DISPLAY -
+PERMENU -
+GET -
+GLOBS -
+ERRORSUBS -
+RIMSUB -
+SYSUTIL -
+TERMINAL -
+EDTPL -
+SLOG -
+BATCH -
.GETMENU -
+AIDEUTIL -
+USERLIB:TEK41OO/LIBRARY -
+USERLIB:CSCLIB/LIBRARY -
+LOADPIO/LIBRARY

C-I

APPENDIX D

INSTALLATION TAPE BACKUP LISTING

LISTING OF SAVE SEF(S)

SAVE SET: EASIE.BCK
WRITTEN BY: CSC7
UIC: [000100,000070]
DATE: 27-MAY-1987 14:25:56.71
COMMAND: BACKUP/LIST=[CSC7.TEAM7.SCOTT]EASIE.LIS/LOG/VERIFY

[CSC.EASIETAPE...] TAPE:EASIE.BCK/REWIND/DENSITY=1600
OPERATING SYSTEM: VAX/VMS VERSION V4.5
BACKUP VERSION: V4.5
CPU ID REGISTER: 018432A5
NODE NAME: SSD2::
WRITTEN ON: -FISAO:
BLOCK SIZE: T192
GROUP SIZE: 10
BUFFER COUNT: 3

[CSC.EASIETAPE]AIDE.DIR;1 1
[CSC.EASIETAPE.AIDE]BUILD DICT.DIR;1 2
[CSC.EASIETAPE.AIDE.BUILD-'DICT]BUILD.DAT;1 6
[CSC.EASIETAPE.AIDE.BUILD--DICT]BUILDDICT.COM;I 1
[CSC.EASIETAPE.AIDE.BUILD--DICT]BUILD EASIE.COM;2 1
[CSC.EASIETAPE.AIDE.BUILD-'DICT]BUILD--EASIE.FOR;4 31
[CSC.EASIETAPE.AIDE.BUILD-'DICT]BUILD--'EASIE.OBJ;2 29
[CSC.EASIETAPE.AIDE.BUILD-'DICT]COMPAL-CI_.COM;1 1
[CSC.EASIETAPE.AIDE.BUILD-"DICT]FORMAT.FOR;I 70
[CSC.EASIETAPE.AIDE.BUILD-'DICT]FORMAT.OBJ;1 45
[CSC.EASIETAPE.AIDE.BUILD-'DICT]FORMRIM.FOR;1 71
[CSC.EASIETAPE.AIDE.BUILD--'DICT]FORMRIM.OBJ;1 59
[CSC.EASIETAPE.AIDE.BUILD-'DICT]GETDESC.FOR;1 5
[CSC.EASIETAPE.AIDE.BUILD'-DICT]GETDESC.OBJ;I 6
[CSC.EASIETAPE.AIDE.BUILD--DICT]MAKDICT.COM;I 1
[CSC.EASIETAPE.AIDE.BUILD--DICT]MAKDICT.FOR;1 83
[CSC.EASIETAPE.AIDE.BUILD--DICT]MAKDICT.OBJ;1 60
[CSC.EASIETAPE.AIDE.BUILD--'DICT]MAKDICTDB.COM;I 1
[CSC.EASIETAPE.AIDE.BUILD--DICT]MAKPRLSCH.FOR;1 13
[CSC.EASIETAPE.AIDE.BUILD-'DICT]MAKPRLSCH.OBJ;1 9
[CSC.EASIETAPE.AIDE.BUILD--'DICT]MAKREV.FOR;I 11
[CSC.EASIETAPE.AIDE.BUILD--DICT]MAKREV.OBJ;1 10
[CSC.EASIETAPE.AIDE.BUILD--DICT]MAKSCHEMA.FOR;I 8
[CSC.EASIETAPE.AIDE.BUILD-'DICT]MAKSCHEMA.OBJ;I 6
[CSC.EASIETAPE.AIDE.BUILD-DICT]MODDICT.FOR;1 9
[CSC.EASIETAPE.AIDE.BUILD--DICT]OPEN.FOR;1 6
[CSC.EASIETAPE.AIDE.BUILD--DICT]OPEN.OBJ;1 6
[CSC.EASIETAPE.AIDE.BUILD--DICT]PROGRAM.FOR;1 7
[CSC.EASIETAPE.AIDE.BUILD--blCT]PROGRAM.OBJ;1 7
[CSC.EASIETAPE.AIDE.BUILD--DICT]PUTDESC.FOR;1 4
[CSC.EASIETAPE.AIDE.BUILD--DICT]RDDICT.FOR;1 84
[CSC.EASIETAPE.AIDE.BUILD--DICT]RDDICT.OBJ;1 57

D-I

APPENDIX D

[CSC.EASIETAPE.AIDE]DB.DIR;I 1
[CSC.EASIETAPE.AIDE.DB]APEX.DAT;I 5
[CSC.EASIE[APE.A[DE.DB]CMDS.DAT;I 2
[CSC.EASIEFAPE.AIDE.DB]DATA.DAT;I 5
[CSC.EASIETAPE.AIDE.DB]DEFAULT.WS;2 2
[CSC.EASIETAPE.AIDE.DB]HELP.DAT;I 2 -
[CSC.EASIETAPE.AIDE.DB]MAIN.DAT;2 2
[CSC.EASIETAPE.AIDE.DB]MASTER WS.DAT;3 I
[CSC.EASIETAPE.AIDE.DB]PBLD.D_T;1 4
[CSC.EASIETAPE.AIDE.DB]PREX.DAT;I 7
[CSC.EASIETAPE.AIDE.DB]TBLD.DAT;1 3
[CSC.EASIETAPE.AIDE.DB]WSC.DAT;I 7
[CSC.EASIETAPE.AIDE]DBSAV.DIR;I 1
[CSC.EASIETAPE.AIDE.DBSAV]AIDMP.DAT;I 27
[CSC.EASIETAPE.AIDE.DBSAV]IDEASDMP.DAT;I 8
[CSC.EASIETAPE.AIDE]EXAMPLE.DIR;I 1
[CSC.EASIETAPE.AIDE.EXAMPLE]CFG.DIR;I I
[CSC.EASIETAPE.AIDE.EXAMPLE.CFG]DEFAULT.CFGD;I I
[CSC.EASIETAPE.AIDE.EXAMPLE.CFG]DEFAULT.DIR;I i
[CSC.EASIETAPE.AIDE.EXAMPLE.CFG.DEFAULT]DATADBI.DAT;I 24
[CSC.EASIETAPE.AIDE.EXAMPLE.CFG.DEFAULT]DATADB2.DAT;I 8
[CSC.EASIETAPE.AIDE.EXAMPLE.CFG.DEFAULT]DATADB3.DAT;1 1
[CSC.EASIETAPE.AIDE.EXAMPLE.CFG]EXAMPLE.WS;I 2
[CSC.EASIETAPE.AIDE.EXAMPLE]DICTNRY.DIR;1 1
[CSC.EASIETAPE.AIDE.EXAMPLE.DICTNRY]DICTI.DAT;I 24
[CSC.EASIETAPE.AIDE.EXAMPLE.DICTNRY]DICT2.DAT;1 8
[CSC.EASIETAPE.AIDE.EXAMPLE.DICTNRY]DICT3.DAT;I I
[CSC.EASIETAPE.AIDE.EXAMPLE]PROG.DIR;I I
[CSC.EASIETAPE.AIDE.EXAMPLE.PROG]BOX.APPLD;I I
[CSC.EASIETAPE.AIDE.EXAMPLE.PROG]BOXIN.REV;I 2
[CSC.EASIETAPE.AIDE.EXAMPLE.PROG]BOXIN TPLD;I 0
[CSC.EASIETAPE.AIDE.EXAMPLE.PROG]BOXOU .REV;I I
[CSC.EASIETAPE.AIDE.EXAMPLE.PROG]BOXOUT.TPLD;I 0
[CSC.EASIETAPE.AIDE.EXAMPLE.PROG]DRAWIN.REV;I 3
[CSC.EASIETAPE.AIDE.EXAMPLE.PROG]DRAWIN.TPLD;I 0
[CSC.EASIETAPE.AIDE.EXAMPLE.PROG]DRAWIT.APPLD;I I
[CSC.EASIETAPE.AIDE.EXAMPLE.PROG]MAKGEO.APPLD;I I
[CSC.EASIETAPE.AIDE EXAMPLE PROG]MAKGEOIN REV;I 2
[CSC.EASlETAPE.AIDEZEXAMPLE_PROG]MAKGEOIN_TPLD;I 0
[CSC.EASIETAPE.AIDE.EXAMPLE.PROG]PROGRAM.PGD;I 2
[CSC.EASIETAPE.AIDE.EXAMPLE]SOURCE.DIR;I 2
[CSC.EASIETAPE.AIDE.EXAMPLE.SOURCE]BOX.COM;I I
[CSC.EASIETAPE.AIDE.EXAMPLE.SOURCE]BOX.FOR;I I
[CSC.EASIETAPE.AIDE.EXAMPLE.SOURCE]BOX.OBJ;7 1 .
[CSC.EASIETAPE.AIDE.EXAMPLE.SOURCE]BOXIN.COMMON;1 i
[CSC.EASIETAPE.AIDE.EXAMPLE.SOURCE]BOXIN.FOR;I 6
[CSC.EASIETAPE.AIDE.EXAMPLE.SOURCE]BOXIN.OBJ;7 3
[CSC.EASIETAPE.AIDE.EXAMPLE.SOURCE]BOXOUT.COMMON;1 1
[CSC.EASIETAPI .AIDE.EXAMPLE.SOURCE]BOXOUT.FOR;I 4
[CSC.EASIETAPE.AIDE.EXAMPLE.SOURCE]BOXOUT.OBJ;7 3
[CSC.EASIETAPE.AIDE.EXAMPLE.SOURCE]DRAW.COM;I 1

D-2

APPENDIX D

[CSC.EASIETAPE.AIDE.EXAMPLE.SOURCE]DRAW.FOR;1 6
[CSC.EASIETAPE.AIDE.EXAMPLE.SOURCE]DRAW.OBJ;7 7
[CSC.EASIETAPE.AIDE.EXAMPLE.SOURCE]DRAWIN.ASSIGN;1 2
[CSC.EASIETAPE.AIDE.EXAMPLE.SOURCE]DRAWIN.COM;I i
[CSC.EASIETAPE.AIDE.EXAMPLE.SOURCE]DRAWIN.FOR;I ii
[CSC.EASIETAPE.AIDE.EXAMPLE.SOURCE]DRAWIN.OBJ;6 8
[CSC.EASIETAPE.AIDE.EXAMPLE.SOURCE]MAKGEO.COM;1 I
[CSC.EASIETAPE.AIDE.EXAMPLE.SOURCE]MAKGEO.FOR;I 3
[CSC.EASIETAPE.AIDE.EXAMPLE.SOURCE]MAKGEO.OBJ;6 2
[CSC.EASIETAPE.AIDE.EXAMPLE.SOURCE]MAKGEOIN.COMMON;1 I
[CSC.EASIETAPE.AIDE.EXAMPLE.SOURCE]MAKGEOIN.FOR;1 6
[CSC.EASIETAPE.AIDE.EXAMPLE.SOURCE]MAKGEOIN.OBJ;6 3
[CSC.EASIETAPE.AIDE.EXAMPLE.SOURCE]MAKGEOOT.COMMON;1 I
[CSC.EASIETAPE.AIDE.EXAMPLE.SOURCE]MAKGEOOT.FOR;1 9
[CSC.EASIETAPE.AIDE.EXAMPLE.SOURCE]MAKGEOOT.OBJ;6 4
[CSC.EASIETAPE.AIDE]EXMENU.DIR;I I
[CSC.EASIETAPE.AIDE.EXMENU]CFG.DIR;1 1
[CSC.EASIETAPE.AIDE.EXMENU.CFG]EXMENU.PROC;I I
[CSC.EASIETAPE.AIDE.EXMENU.CFG]EXMENU.PROCD;1 1
[CSC.EASIETAPE.AIDE.EXMENU.CFG]EXMENU.PROC 1;I 1
[CSC.EASIETAPE.AIDE.EXMENU.CFG]EXMENU.PROC'--2;I 1
[CSC.EASIETAPE.AIDE.EXMENU.CFG]EXMENU.PROC--3;I I
[CSC.EASIETAPE.AIDE.EXMENU.CFG]EXMENU.WS;1-- 2
[CSC.EASIETAPE.AIDE.EXMENU.CFG]EXMENU.WSD;1 1
[CSC.EASIETAPE.AIDE]EXSIMPLE.DIR;1 1
[CSC.EASIETAPE.AIDE.EXSIMPLE]BOX.COM;1 1
[CSC.EASIETAPE.AIDE.EXSIMPLE]BOX.FOR;1 1
[CSC.EASIETAPE.AIDE.EXSIMPLE]BOX.OBJ;1 1
[CSC.EASIETAPE.AIDE.EXSIMPLE]BOXIN.COMMON;1 i
[CSC.EASIETAPE.AIDE.EXSIMPLE]BOXIN.FOR;1 6
[CSC.EASIETAPE.AIDE.EXSIMPLE]BOXIN.OBJ;1 3
[CSC.EASIETAPE.AIDE.EXSIMPLE]BOXIN.REV;1 2
[CSC.EASIETAPE.AIDE.EXSIMPLE]BOXOUT.COMMON;1 1
[CSC.EASIETAPE.AIDE.EXSIMPLE]BOXOUT.FOR;1 4
[CSC.EASIETAPE.AIDE.EXSIMPLE]BOXOUT.OBJ;1 3
[CSC.EASIETAPE.AIDE.EXSIMPLE]BOXOUT.REV;1 1
[CSC.EASIETAPE.AIDE.EXSIMPLE]DATADBI.DAT;I 24
[CSC.EASIETAPE.AIDE.EXSIMPLE]DATADB2.DAT;1 8
[CSC.EASIETAPE.AIDE.EXSIMPLE]DATADB3.DAT;1 1
[CSC.EASIETAPE.AIDE.EXSIMPLE]DICTI.DAT;1 24
[CSC.EASIETAPE.AIOE.EXSIMPLE]DICT2.DAT;I 8
[CSC.EASIETAPE.AIDE.EXSIMPLE]DICT3.DAT;I 1
[CSC.EASIETAPE.AIDE.EXSIMPLE]SCHEMA.DAT;1 1
[CSC.EASIETAPE.AIDE]HELP.DIR;1 I
[CSC.EASIETAPE.AIDE,HELP]ACT.DAT;I 7
[CSC.EASlETAPE.AIDE.HELP]CMDS.DAT;I 2
[CSC.EASIETAPE.AIDE.HELP]EDIT.DAT;I 4
[CSC.EASIETAPE.AIDE.HELP]ERRS.DAT;I 8
[CSC.EASIETAPE.AIDE.HELP]HELPFILES.DAT;I 27
[CSC.EASlETAPE.AIDE.HELP]IND,DAT;I I
[CSC.EASIETAPE.AIDE.HELP]INDX.DAT;I 2

D-3

APPENDIX D

[CSC.EASIETAPE.AIDE.HELP]OBJ.DAT;I 6
[CSC.EASIETAPE.AIDE.HELP]PERM.DAT;I 3
[CSC.EASIETAPE.AIDE]LOGIN.COM;I 1
[CSC.EASIETAPE.AIDE]PROC.DIR;1 1
[CSC.EASIETAPE.AIDE..PROC]AIDE.COM;2 1
[CSC.EASIETAPE.AIDE.PROC]AIDEINIT.COM;8 5
[CSC.EASIETAPE.AIDE.PROC]ATTDIR.COM;5 I
[CSC.EASIETAPE.AIDE.PROC]COPYCFG.COM;5 I
[CSC.EASIETAPE.AIDE.PROC]DELDB.COM;8 I
[CSC.EASIETAPE.AIDE.PROC]LSTDIR.COM;3 1
[CSC.EASIETAPE.AIDE.PROC]OPNBATCH.COM;5 1
[CSC.EASIETAPE.AIDE.PROC]UNAIDEINIT.COM;16 1
[CSC.EASIETAPE.AIDE]PROG.DIR;I 4
[CSC.EASIETAPE.AIDE.PROG]AIDEUTIL.FOR;33 22
[CSC.EASIETAPE.AIDE.PROG]AIDEUTIL.OBJ;6 20
[CSC.EASIETAPE.AIDE.PROG]AIDEUTIL.OLB;6 72
[CSC.EASIETAPE.AIDE.PROG]BATCH.FOR;32 14
[CSC.EASIETAPE.AIDE.PROG]BATCH.OBJ;2 21
[CSC.EASIETAPE.AIDE.PROG]CRELNM.FOR;42 6
[CSC.EASIETAPE.AIDE.PROG]DCOMPILE.COM;3 I
[CSC.EASIETAPE.AIDE.PROG]DISPLAY.FOR;25 15
[CSC.EASIETAPE.AIDE.PROG]DISPLAY.OBJ;4 20
[CSC.EASIETAPE.AIDE.PROG]DLOAD.COM;36 1
[CSC.EASIETAPE.AIDE.PROG]EDTPL.FOR;8 32
[CSC.EASIETAPE.AIDE.PROG]EDTPL.OBJ;3 33
[CSC.EASIETAPE.AIDE.PROG]ERRORSUBS.FOR;6 11
[CSC.EASIETAPE.AIDE.PROG]ERRORSUBS.OBJ;2 17
[CSC.EASIETAPE.AIDE.PROG]FASTAIDE.FOR;52 30
[CSC.EASIETAPE.AIDE.PROG]FASTAIDE.OBJ;7 69
[CSC.EASIETAPE.AIDE.PROG]GET.FOR;25 22
[CSC.EASIETAPE.AIDE.PROG]GET.OBJ;7 26
[CSC.EASIETAPE.AIDE.PROG]GETMENU.FOR;20 12
[CSC.EASIETAPE.AIDE.PROG]GETMENU.OBJ;7 18
[CSC.EASIETAPE.AIDE.PROG]GLOBALS.INC;1 3
[CSC.EASIETAPE.AIDE.PROG]GLOBS.FOR;8 11
[CSC.EASIETAPE.AIDE.PROG]GLOBS.OBJ;4 12
[CSC.EASIETAPE.AIDE.PROG]INTERACT.FOR;IO 10
[CSC.EASIETAPE.AIDE.PROG]INTERACT.OBJ;3 24
[CSC.EASIETAPE.AIDE.PROG]INTERPRET.FOR;9 36
[CSC.EASIETAPE.AIDE.PROG]INTERPRET.OBJ;3 44
[CSC.EASIETAPE.AIDE.PROG]LOAD.COM;5 1
[CSC.EASIETAPE.AIDE.PROG]LOCALS.INC;I 2
[CSC.EASIEFAPE.AIDE.PROG]LOCALS2.1NC;I 3
[CSC.EASIETAPE.AIDE.PROG]MASTER.FOR;11 3
[CSC.EASIETAPE.AIDE.PROG]MASTER.OBJ;2 3
[CSC.EASIETAPE.AIDE.PROG]PERMENU.FOR;31 27
[CSC.EASIETAPE.AIDE.PROG]PERMENU.OBJ;6 41
[CSC.EASIETAPE.AIDE.PROG]PTH2FIL.FOR;27 8
[CSC.EASlETAPE.AIDE.PROG]PUTTRM.COM;9 i
[CSC.EASIETAPE.AIDE.PROG]PUTTRM.FOR;6 3
[CSC.EASIETAPE.AIDE.PROG]RESPPROCS.FOR;81 134
[CSC.EASlETAPE.AIDE.PROG]RESPPROCS.OBJ;29 157

D-4

APPENDIX D

[CSC.EASIETAPE.AIDE.PROG]RIMSUB.FOR;45 36
[CSC.EASIETAPE.AIDE.PROG]RIMSUB.OBJ;4 43
[CSC.EASIETAPE.AIDE.PROG]SLOG.FOR;13 50
[CSC.EASlETAPE.AIDE.PROG]SLOG.OBJ;4 50
[CSC.EASIETAPE.AIDE.PROG]SYSUTIL.FOR;55 23
[CSC.EASIETAPE.AIDE.PROG]SYSUTIL.OBJ;6 25
[CSC.EASIETAPE.AIDE.PROG]SYSUTIL.OLB;5 77
[CSC.EASlETAPE.AIDE.PROG]TEMPSUB.FOR;45 53
[CSC.EASlETAPE.AIDE.PROG]TEMPSUB.OBJ;5 84
[CSC.EASIETAPE.AIDE.PROG]TERMINAL.FOR;22 13
[CSC.EASlETAPE.AIDE.PROG]TERMINAL.OBJ;2 17
[CSC.EASlETAPE.AIDE.PROG]TERMINAL.OLB;2 68
[CSC.EASIETAPE.A[DE]REVIEW.DIR;I I
[CSC.EASIETAPE.AIDE.REVlEW]R4.FOR;I 196
[CSC.EASIETAPE.AIBE.REVlEW]R4.0BJ;I 123
[CSC.EASlETAPE.AIDE.REVIEW]RIMLOD.COM;2 I
[CSC.EASIETAPE]BUILD.COM;3 9
[CSC.EASlETAPE]CSCLIB.FOR;I 24
[CSC.EASIETAPE]CSCLIB.OLB;I 66
[CSC.EASlETAPE]TEK41OO.FOR;I 72
[CSC.EASIETAPE]TEK41OO.OLB;I 144

TOTAL OF 223 FILES, 3366 BLOCKS
END OF SAVE SET.

D-5

APPENDIX E

BUILD EASIE EXECUTABLES COMMAND FILE

_ ! ****_k*******k_*_**********_********k_**_********_

$!***** BUILD.COM IS A VMS 4.4 COMMAND *****
$!***** FILE USED TO LINK THE REQUIRED ***k,
$!***** EASIE EXECUTABLES. *****
$!***** *****
$!***** IT IS ASSUMED THAT EASIE *****
$!***** MODULES WERE TRANSFERRED FROM *****
$!***** MAGNETIC TAPE USING THE VMS *****
$!***** BACKUP UTILITY (THUS PRESERVING *****
$!***** THE NECESSARY DIRECTORY STRUCTURE)*****
$!***** *****
$!***** THE TOP LEVEL DIRECTORY HAS A *****
$!***** RELATIVE PATHNAME OF: *****
$!***** [.CSC] *****
$!***** IT IS NECESSARY TO "RUN" THE *****
$!***** THE COMMANDFILE, BUILD.COM, *****
$!***** WHILE "ATTACHED" TO THIS AREA BY *****
$!***** ENTERING: *****
$!***** BUILD *****
$!***** *****
$!***** THE REQUIRED COMMAND, OBJECT, AND *****
$!***** LIBRARY FILES ARE INCLUDED MAKING *****
$!***** COMPILATION UNNECESSARY IN MANY *****
$!****k INSTANCES. (IF COMPILATION IS *****
$!***** REQUIRED, CHECK THE SPECIFIED *****
$!***** SUBDIRECTORY FOR A ".COM" FILE *****
$!***** WITH APPROPRIATE COMPILER *****
$!***** PARAMETERS.) *****
$!***** *****
$!***** THE INITIAL PORTION OF THE COMMAND*****
$!***** FILE IS USED FOR DEFINING SYMBOLS.*****
$!***** THE EASIE IMPLEMENTER MUST RESET *****
$!***** THESE SYMBOLS ACCORDING TO HIS/HER*****
$!***** SYSTEM. THE SYMBOLS LOADRIM AND *****
$!***** LOADPIO ARE USED TO LOAD THE RIM *****
$!***** AND PLOT-IO PROPRIETARY LIBRARIES *****
$!***** DURING THE LINKING PROCESS. THE *****
$!***** SYMBOL USERLIB IDENTIFIES THE *****
$!***** LOCATION OF THE TWO USER OBJECT *****
$!***** LIBRARIES, TEK4100 AND CSCLIB. *****
$!***** (THESE TWO USER LIBRARIES MAY BE *****
$!***** PLACED ANYWHEREBY THE IMPLEMENTER*****
$!***** AS LONG AS SYMBOL USERLIB REFLECTS*****
$!***** THE PROPER LOCATION.) *****
$!***** *****
$!***** THE OTHER SYMBOLS ARE USED DURING *****
$!***** EASIE EXECUTION (IN ADDITION TO *****
$!***** THE LINKING PROCESS). FOR THIS *****
$!***** REASON THESE SYMBOLS SHOULD BE *****

E-1

APPENDIX E

$!***** ENTERED INTO A PROSPECTIVES USER'S*****
$!***** LOGIN.COM FILE. THE SYMBOLS IN *****
$!***** THIS CATEGORY INCLUDE: *****
$!***** TOAIDE, RUNRIM, RUNDICT, REVIEW, *****
$!***** AND AIDEX. *****
$!***** IN THE CASE OF RUNRIM, THE SYMBOL *****
$!***** SHOULD INCLUDE THE AREA CONTAINING*****
$!***** THE RIM EXECUTABLES. *****
$!***** THE SYMBOL AIDEX, POINTS TO A *****
$!***** COMMANDFILE WHICH MAY BE USED TO *****
$! k**** INITIATE EASIE EXECUTION. *****
**
$_
$! DEFINE VMS SYMBOLS
SDEFINE TOAIDE DUBI:[CSC.EASIETAPE.AIDE.]
$DEFINE LOADPIO "DUA2:[LIBS]PLOTIO"
SDEFINE LOADRIM "SYS$SYSDEVICE:[RIM.RIM6]RIMLIB"
$DEFINE USERLIB DUBI:[CSC.EASIETAPE]
SRUNRIM :== R SYS$SYSDEVICE:[RIM.RIM6]RIM
$RUNDICT :== R TOAIDE:[BUILD DICT]MAKDICT
$REVlEW :== STOAIDE:[REVIEW]_4
SAIDEX :== @TOAIDE:[PROC]AIDE.COM
$_
$! BUILD THE EASIE EXECUTIVE
$SET DEF [.AIDE.PROG]
$@LOAD
$@PUTTRM
$PURGE
$! BUILD REVIEWER
$SET DEF [-.REVIEW]
$_RIMLOD
SPURGE
$! BUILD THE DATA DICTIONARY TEMPLATE UTILITIES
$SET DEF [-.BUILD DICT]
$@MAKDICT
$_BUILD EASIE
$PURGE
$! BUILD THE APPLICATION PROGRAMSCORRESPONDING
$! TO DOCUMENTEDEXAMPLES
$SET DEF [-.EXSIMPLE]
$_BOX
$PURGE
$SET DEF [-.EXAMPLE.SOURCE]
$_BOX
$(aDRAW
$_MAKGEO
$_DRAWIN
$SET DEF [-.PROG]
SPURGE
$SET DEF [---]

E-2

REFERENCES

1. Lawrence F. Rowel1; and John S. Davis: The Environment
For Application Software Integration and Execution
(EASIE) Version 1.0. VOLUME I - EXECUTIVE OVERVIEW.
NASA TM-100573, April 1988.

2. Kennie H. Jones; Donald P. Randall; Scott S. Stallcup;
and Lawrence F. Rowel]: The Environment For Applica-
Lion Software Integration and Execution (EASIE)
Version 1.0. VOLUME II - PROGRAM INTEGRATION GUIDE.
NASA TM-I00574, April 1988.

3. Dr. James L. Schwing; Lawrence F. Rowel1; and Russell E.
Criste: The Environment For Application Software
Integration and Execution (EASIE) Version 1.0,
VOLUME Ill - PROGRAM EXECUTION GUIDE. NASA TM-100575,
Aprll 1988.

4. Boeing Computer Services: BCS RIM - Relational Infor-
mation Management System Version 6.0 User Guide. The
Boeing Company, 1983.

5. Structural Dynamics Research Corp.: I-DEAS User Guide
Level 3. 5201.004, March, 1986.

R-I

Report Documentation Page

1 Rr;port No 2. Government Accession No. 3. Recipient's Catalog No.

NASATM-100576
4 FMtleand Subtitle 5. Report Date

The Environment For Application Software Integration April 1988
and Execution (EASIE) Version 1.0, Volume IV - System
Instal lation And Maintenance Guide 6. Performing Organization Code

-7_.-,_uih--od--s) 8. Performing Organization Report No.

Donald P. Randall, Kennie H. Jones, and
Lawrence F. Rowell

10. Work Unit No.

9. Performing Organization Name and Address 506- 49- 31- 01
NASA LangleyResearchCenter 11.Contractor GrantNo.
Hampton,VA 23665-5225

13,Type of Report and PeriodCovered

12.SponsoringAgency Name and Address TechnicalMemorandum

NationalAeronauticsand Space Administration 14Sponsoring/_gencyCode
Washington,DC 20546-0001

15. Supplementary Notes

Donald P. Randalland Kennie H. Jones, ComputerSciencesCorporation,Hampton,VA.
Lawrence F. Rowell,LangleyResearchCenter,Hampton,VA.

16.AbstractThe Environmentfor ApplicationSoftware Integrationand Execution,EASIE,
provides both a methodologyand a set of softwareutilityprogramsto ease the
task of coordinatingengineeringdesignand analysiscodes. This document pro-
vides the necessaryinformationfor installingthe EASIE softwareon a host
computersystem. The target host is a DEX VAX runningVMS version4, but host
dependenciesare noted when appropriate. Relevantdirectoriesand individualfiles
are identified,and compile/load/executesequencesare specified. In the case of
the data managementutilities,databasemanagementsystem (DBMS)specificfeatures
are describedin an effort to assist the maintenanceprogrammerin convertingto
a new DBMS. The documentalso detailsa sample EASIE programdirectorystructure
to guide the program implementerin establishinghis/herapplicationdependent
environment.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

EASIE
ExecutiveSoftware Unclassified- Unlimited
ProgramIntegration Subjectcategory - 61

19. Security Cla_if. (of this repot) 20. Security Cla_if. (of this page) 21. No. of pages _. Price

Unclassified Unclassified 49 A03

NASA FORM 1626 OCT86

