14 research outputs found

    Mesenchymal stem cell-based therapy for ischemic stroke

    Get PDF
    Ischemic stroke represents a major, worldwide health burden with increasing incidence. Patients affected by ischemic strokes currently have few clinically approved treatment options available. Most currently approved treatments for ischemic stroke have narrow therapeutic windows, severely limiting the number of patients able to be treated. Mesenchymal stem cells represent a promising novel treatment for ischemic stroke. Numerous studies have demonstrated that mesenchymal stem cells functionally improve outcomes in rodent models of ischemic stroke. Recent studies have also shown that exosomes secreted by mesenchymal stem cells mediate much of this effect. In the present review, we summarize the current literature on the use of mesenchymal stem cells to treat ischemic stroke. Further studies investigating the mechanisms underlying mesenchymal stem cells tissue healing effects are warranted and would be of benefit to the field

    Mesenchymal Stromal Cells Accelerate Epithelial Tight Junction Assembly via the AMP-Activated Protein Kinase Pathway, Independently of Liver Kinase B1

    Get PDF
    International audienceBackground. Mesenchymal stromal cells (MSC) are fibroblast-like multipotent cells capable of tissue-repair properties. Given the essentiality of tight junctions (TJ) in epithelial integrity, we hypothesized that MSC modulate TJ formation, via the AMP-activated kinase (AMPK) pathway. Liver kinase-β1 (LKB1) and Ca 2+-calmodulin-dependent protein kinase kinase (CaMKK) represent the main kinases that activate AMPK. Methods. The in vitro Ca 2+ switch from 5 μM to 1.8 mM was performed using epithelial Madin-Darby canine kidney (MDCK) cells cultured alone or cocultured with rat bone marrow-derived MSC or preexposed to MSC-conditioned medium. TJ assembly was measured by assessing ZO-1 relocation to cell-cell contacts. Experiments were conducted using MDCK stably expressing short-hairpin-RNA (shRNA) against LKB1 or luciferase (LUC, as controls). Compound STO-609 (50 μM) was used as CaMKK inhibitor. Results. Following Ca 2+ switch, ZO-1 relocation and phosphorylation/activation of AMPK were significantly higher in MDCK/MSC compared to MDCK. No difference in AMPK phosphorylation was observed between LKB1-shRNA and Luc-shRNA MDCK following Ca 2+ switch. Conversely, incubation with STO-609 prior to Ca 2+ switch prevented AMPK phosphorylation and ZO-1 relocation. MSC-conditioned medium slightly but significantly increased AMPK activation and accelerated TJ-associated distribution of ZO-1 post Ca 2+ switch in comparison to regular medium. Conclusions. MSC modulate the assembly of epithelial TJ, via the CaMKK/AMPK pathway independently of LKB1

    Recent Advances in Stem Cell-Based Therapeutics for Stroke

    No full text
    Regenerative medicine for central nervous system disorders, including stroke, has challenged the non-regenerative capacity of the brain. Among the many treatment strategies tailored towards repairing the injured brain, stem cell-based therapeutics have been demonstrated as safe and effective in animal models of stroke, and are being tested in limited clinical trials. We address here key lab-to-clinic translational research that relate to efficacy, safety, and mechanism of action underlying stem cell therapy. Recognizing the multi-pronged cell death processes associated with stroke that will likely require combination therapies, we next discuss potent drugs and novel technologies directed at improving the functional outcomes of stem cell-based therapeutics. We also examine discrepant transplant regimens between preclinical studies and clinical trials, as well as missing appropriate control arm (i.e., stroke subjects undergoing rehabilitation) on which to directly compare the therapeutic benefits of cell therapy. Finally, the bioethics of cell therapy is presented in order to assess its prevailing social status. With preliminary results now being reported from on-going clinical trials of stem cell therapy for stroke, a careful assessment of the true functional benefits of this novel treatment will further direct the future of regenerative medicine for neurological disorders
    corecore