421 research outputs found

    A research program to reduce interior noise in general aviation airplanes: Noise reduction through a cavity-backed flexible plate

    Get PDF
    A prediction method is reported for noise reduction through a cavity-backed panel. The analysis takes into account only cavity modes in one direction. The results of this analysis were to find the effect of acoustic stiffness of a backing cavity on the panel behavior. The resulting changes in the noise reduction through the panel are significant

    Comparison of theoretical predicted longitudinal aerodynamic characteristics with full-scale wind tunnel data on the ATLIT airplane

    Get PDF
    An analytical method is presented for predicting the lift coefficient, the pitching moment coefficient, and the drag coefficient of light, twin-engine, propeller-driven airplanes. The method was applied to the Advanced Technology Light Twin-Engine airplane. The calculated characteristics were then correlated against full scale wind tunnel data. The analytical method was found to predict the drag and pitching moment fairly well. However, the lift prediction was extremely poor

    A program to evaluate a control system based on feedback of aerodynamic pressure differentials, part 1

    Get PDF
    The use of pressure differentials in a flight control system was evaluated. The pressure profile around the test surface was determined using two techniques: (1) windtunnel data (actual); and (2) NASA/Langley Single Element Airfoil Computer Program (theoretical). The system designed to evaluate the concept of using pressure differentials is composed of a sensor drive and power amplifiers, actuator, position potentiometer, and a control surface. The characteristics (both desired and actual) of the system and each individual component were analyzed. The desired characteristics of the system as a whole are given. The flight control system developed, the testing procedures and data reduction methods used, and theoretical frequency response analysis are described

    Cross-Cultural Measurement Invariance in the Personality Inventory for DSM-5

    Full text link
    The validity of cross-cultural comparisons of test scores requires that scores have the same meaning across cultures, which is usually tested by checking the invariance of the measurement model across groups. In the last decade, a large number of studies were conducted to verify the equivalence across cultures of the dimensional Alternative Model of Personality Disorders (DSM-5 Section III). These studies have provided information on configural invariance (i.e., the facets that compose the domains are the same) and metric invariance (i.e., facet-domain relationships are equal across groups), but not on the stricter scalar invariance (i.e., the baseline levels of the facets are the same), which is a prerequisite for meaningfully comparing group means. The present study aims to address this gap. The Personality Inventory for DSM-5 (PID-5) was administered to five samples differing on country and language (Belgium, Catalonia, France, Spain, and Switzerland), with a total of 4,380 participants. Configural and metric invariance were supported, denoting that the model structure was stable across samples. Partial scalar invariance was supported, being minimal the influence of non-invariant facets. This allowed cross-cultural mean comparisons. Results are discussed in light of the sample composition and a possible impact of culture on development of psychopathologyPreparation of this manuscript was supported by Grant PSI2017–85022-P (Ministerio de Ciencia, Innovacion ´ y Universidades, Spain) and the UAM-IIC Chair "Psychometric Models and Applications

    Development of a Long Endurance Mini-UAV: ETERNITY

    Get PDF
    This study presents the effort given for the first prototype of a Long Endurance Mini UAV concept called Eternity. A multi-disciplinary conceptual aircraft design program called CDSGN is developed and used for the design of the Eternity. Unlike the traditional design methods that uses statistical data from the previous well-flown aircrafts, CDSGN analyses numerous aircraft candidates and simulates each candidate for the given mission definition and outputs the corresponding performance. The unique property of the presented design methodology comes from a computationally fast and physically accurate modelling of the aerodynamic characteristics of each candidate by using a modified version of a vortex lattice program called AVL from Mark Drela. Two types of configurations have been analysed for the Eternity design, conventional and flying-wing. A wide envelope of variable design parameters used for both configurations such as wing surface area, cruise speed, battery capacity, different airfoils, etc... Integration of solar cells, and the management of solar energy is also considered for every candidate. Only the wing span size has been limited to one meter. Additionally, the on-board avionics and payload weights and sizes are fixed for every candidate as they are independent of the design. Analyses by CDSGN concluded the dominance of the conventional configuration for the given long endurance mission performance both on solar and nonsolar conditions. Optimum wing surface area and the on-board battery energy found interactively by a post-filtering program developed in-house. A custom airfoil family, transitioning along the span, have been designed specifically for the corresponding local Reynolds number for specific spanwise locations. A wind-tunnel campaign is performed with a full-scale model and first flight tests have been performed in order to show the feasibility of long endurance flights

    Life-Cycle Cost Estimation for High-Speed Vehicles: from the engineers’ to the airline’s perspective

    Get PDF
    This paper aims at upgrading the holistic Cost Estimation methodology for High-Speed Vehicles already developed by Politecnico di Torino and the European Space Agency (ESA) to encompass different stakeholders’ perspectives. In details, the presented methodology combines International Air Transport Association (IATA) best practices with a detailed Life- Cycle Cost (LCC) assessment, which includes the evaluation of Research, Development, Test and Evaluation (RDTE) Costs, Production costs and of Direct and Indirect Operating Costs (DOC and IOC). The integrated approach allows to further extend the capabilities of the inhouse developed HyCost tool to support all the actors of the product value-chain (including engineers, manufacturers, airlines and customers) in assessing the economic sustainability of a newly under-development high-speed vehicle. However, considering the need of providing all these cost analyses perspectives since the early design stages, the derived Cost Estimation Relationships are mainly derived on statistical bases. To cope with the uncertainties that affect the initial statistical population and consequently, the CERs, this paper presents each cost item together with the estimation of related prediction intervals. Finally, results of the application of the upgraded cost estimation methodology and of the upgraded tool to the LAPCAT MR2.4 high-speed civil transport are reported and discussed

    A new aircraft architecture based on the ACHEON Coanda effect nozzle: flight model and energy evaluation

    Get PDF
    Purpose Aeronautic transport has an effective necessity of reducing fuel consumption and emissions to deliver efficiency and competitiveness driven by today commercial and legislative requirements. Actual aircraft configurations scenario allows envisaging the signs of a diffused technological maturity and they seem very near their limits. This scenario clearly shows the necessity of radical innovations with particular reference to propulsion systems and to aircraft architecture consequently. Methods This paper presents analyses and discusses a promising propulsive architecture based on an innovative nozzle, which allows realizing the selective adhesion of two impinging streams to two facing jets to two facing Coanda surfaces. This propulsion system is known with the acronym ACHEON (Aerial Coanda High Efficiency Orienting Nozzle). This paper investigates how the application of an all-electric ACHEONs propulsion system to a very traditional commuter aircraft can improve its relevant performances. This paper considers the constraints imposed by current state-of-the-art electric motors, drives, storage and conversion systems in terms of both power/energy density and performance and considers two different aircraft configurations: one using battery only and one adopting a more sophisticated hybrid cogeneration. The necessity of producing a very solid analysis has forced to limit the deflection of the jet in a very conservative range (±15°) with respect to the horizontal. This range can be surely produced also by not optimal configurations and allow minimizing the use of DBD. From the study of general flight dynamics equations of the aircraft in two-dimensional form it has been possible to determine with a high level of accuracy the advantages that ACHEON brings in terms of reduced stall speed and of reduced take-off and landing distances. Additionally, it includes an effective energy analysis focusing on the efficiency and environmental advantages of the electric ACHEON based propulsion by assuming the today industrial grade high capacity batteries with a power density of 207 Wh/kg. Results It has been clearly demonstrated that a short flight could be possible adopting battery energy storage, and longer duration could be possible by adopting a more sophisticated cogeneration system, which is based on cogeneration from a well-known turboprop, which is mostly used in helicopter propulsion. This electric generation system can be empowered by recovering the heat and using it to increase the temperature of the jet. It is possible to transfer this considerable amount of heat to the jet by convection and direct fluid mixing. In this way, it is possible to increase the energy of the jets of an amount that allows more than recover the pressure losses in the straitening section. In this case, it is then possible to demonstrate an adequate autonomy of flight and operative range of the aircraft. The proposed architecture, which is within the limits of the most conservative results obtained, demonstrates significant additional benefits for aircraft manoeuvrability. In conclusion, this paper has presented the implantation of ACHEON on well-known traditional aircraft, verifying the suitability and effectiveness of the proposed system both in terms of endurance with a cogeneration architecture and in terms of manoeuvrability. It has demonstrated the potential of the system in terms of both takeoff and landing space requirements. Conclusions This innovation opens interesting perspectives for the future implementation of this new vector and thrust propulsion system, especially in the area of greening the aeronautic sector. It has also demonstrated that ACHEON has the potential of renovating completely a classic old aircraft configuration such as the one of Cessna 402
    corecore