251 research outputs found

    Primary tumor sidedness and benefit from FOLFOXIRI plus bevacizumab as initial therapy for metastatic colorectal cancer. Retrospective analysis of the TRIBE trial by GONO

    Get PDF
    Right-sided metastatic colorectal cancer (mCRC) patients have poor prognosis and achieve limited benefit from first-line doublets plus a targeted agent. In this unplanned analysis of the TRIBE study, we investigated the prognostic and predictive impact of primary tumor sidedness in mCRC patients and the differential impact of the intensification of the chemotherapy in subgroups defined according to both primary tumor sidedness and RAS and BRAF mutational status

    New method to detect histone acetylation levels by flow cytometry

    Get PDF
    Background: Reversible histone acetylation affects chromatin structural organization, thus regulating gene expression and other nuclear events. Levels of histone acetylation are tightly modulated in normal cells, and alterations of their regulating mechanisms have been shown to be involved in tumorigenesis. Methods: We developed a new flow cytometric technique for detection of histone acetylation, based on a specific monoclonal antibody that recognizes acetylated histone tails. Bivariate analysis for histone acetylation levels and DNA were performed to study modulation of chromatin organization during the cell cycle and after induction of histone hyperacetylation by the histone deacetylase (HDAC) inhibitor trichostatin A (TSA). Histone acetylation and transcription levels were monitored during differentiation induced by retinoic acid alone or in combination with TSA. Blood samples from patients were analyzed with the described protocol to monitor the effects of HDAC inhibitors in vivo and validate the developed protocol for clinical usage. Results: Flow cytometric detection of acetylation status can successfully detect modifications induced by HDAC inhibitor treatment in vivo as demonstrated by analysis of various blood samples from patients treated with valproic acid. Changes in acetylation levels during the cell cycle demonstrated a reproducible increase in histone acetylation during the replication phase that was subsequently decreased at the G2M entrance, thus paralleling the behavior of DNA replication and transcriptional activity. Conclusions: Multiparameter analysis of histone acetylation and expression of molecular markers, DNA ploidy, and/or cell cycle kinetics can provide a quick and statistically reliable tool for the diagnosis and evaluation of treatment efficacy in clinical trials using HDAC inhibitors

    Lipopolysaccharide or Whole Bacteria Block the Conversion of Inflammatory Monocytes into Dendritic Cells In Vivo

    Get PDF
    Monocytes can develop into dendritic cells (DCs) that migrate to lymph nodes (LNs) and present antigens to T cells. However, we find that this differentiation is blocked when monocytes accumulate subcutaneously in response to bacteria or lipopolysaccharide (LPS). The inhibition of DC differentiation is mediated by the bacteria and in conjunction with inflammatory cells recruited at the site of injection. Inhibition of migratory DC development was reversed in Toll-like receptor (TLR)4-mutated mice when LPS, but not whole bacteria, was injected, suggesting that TLR4 is one but not the only mediator of the inhibition. The block imposed by bacteria was partly relieved by the absence of interleukin (IL)-12 p40, but not by individual absence of several cytokines involved in DC differentiation or in inflammation, i.e., IL-6, IL-10, IL-12 p35, and interferon Îł. Consistent with the inability of monocytes to yield migrating DCs, and the finding that other DCs had limited access to particulate or bacterial antigens, these antigens were weakly presented to T cells in the draining LN. These results illustrate that bacteria-associated signals can have a negative regulatory role on adaptive immunity and that local innate responses for containment of infectious bacteria can at least initially supersede development of adaptive responses

    Identification of Isoform 2 Acid-Sensing Ion Channel Inhibitors as Tool Compounds for Target Validation Studies in CNS

    Get PDF
    Acid-sensing ion channels (ASICs) are a family of ion channels permeable to cations and largely responsible for the onset of acid-evoked ion currents both in neurons and in different types of cancer cells, thus representing a potential target for drug discovery. Owing to the limited attention ASIC2 has received so far, an exploratory program was initiated to identify ASIC2 inhibitors using diminazene, a known pan-ASIC inhibitor, as a chemical starting point for structural elaboration. The performed exploration enabled the identification of a novel series of ASIC2 inhibitors. In particular, compound 2u is a brain penetrant ASIC2 inhibitor endowed with an optimal pharmacokinetic profile. This compound may represent a useful tool to validate in animal models in vivo the role of ASIC2 in different neurodegenerative central nervous system pathologies

    Both ghrelin deletion and unacylated ghrelin overexpression preserve muscles in aging mice

    Get PDF
    Sarcopenia, the decline in muscle mass and functionality during aging, might arise from age-associated endocrine dysfunction. Ghrelin is a hormone circulating in both acylated (AG) and unacylated (UnAG) forms with antiatrophic activity on skeletal muscle. Here, we show that not only lifelong overexpression of UnAG (Tg) in mice, but also the deletion of ghrelin gene (Ghrl KO) attenuated the age-associated muscle atrophy and functionality decline, as well as systemic inflammation. Yet, the aging of Tg and Ghrl KO mice occurs with different dynamics: while old Tg mice seem to preserve the characteristics of young animals, Ghrl KO mice features deteriorate with aging. However, young Ghrl KO mice show more favorable traits compared to WT animals that result, on the whole, in better performances in aged Ghrl KO animals. Treatment with pharmacological doses of UnAG improved muscle performance in old mice without modifying the feeding behavior, body weight, and adipose tissue mass. The antiatrophic effect on muscle mass did not correlate with modifications of protein catabolism. However, UnAG treatment induced a strong shift towards oxidative metabolism in muscle. Altogether, these data confirmed and expanded some of the previously reported findings and advocate for the design of UnAG analogs to treat sarcopenia

    Cell cycle perturbations and apoptosis induced by isohomohalichondrin B (IHB), a natural marine compound

    Get PDF
    Isohomohalichondrin B (IHB), a novel marine compound with anti-tumoral activity, extracted from the Lissodendorix sponge, inhibits GTP binding to tubulin, preventing microtubule assembly. Cell cycle perturbations and apoptosis induced by IHB were investigated on selected human cancer cell lines by using flow cytometric and biochemical techniques. Monoparameter flow cytometric analysis showed that 1 h IHB exposure caused a delayed progression through S-phase, a dramatic block in G2M phase of the cell cycle and the appearance of tetraploid cell population in LoVo, LoVo/DX, MOLT-4 and K562 cells. At 24 h after IHB exposure, the majority of cells blocked in G2M were in prophase as assessed by morphological analysis and by the fact that they expressed high levels of cyclin A/cdc2 and cyclin B1/cdc2. At 48 h, all cells were tetraploid as assessed by biparameter cyclin A/DNA and cyclin B1/DNA content analysis. Apoptotic death was detected in both leukaemic MOLT-4 and K562 cells, which express wild-type and mutated p53 respectively, when the cells were blocked in mitotic prophase. In conclusion, IHB is a novel potent anti-tumour drug that causes delayed S-phase progression, mitotic block, tetraploidy and apoptosis in cancer cell lines. © 1999 Cancer Research Campaig

    From DYMUS to DYPARK: validation of a screening questionnaire for dysphagia in Parkinson's disease

    Get PDF
    Dysphagia is a common debilitating symptom in people with Parkinson's Disease (PD), adequate screening of swallowing disorders is fundamental. The DYMUS questionnaire has shown very good characteristics for the screening of dysphagia in Multiple Sclerosis, and it might also prove useful for screening dysphagia in PD. The primary aim was to test and validate the DYMUS questionnaire in PD patients. This is an observational multicentric study involving 103 patients affected by PD. All subjects filled in the DYMUS and the Eating Assessment Tool (EAT-10) questionnaires. A subgroup of patients (n = 53) underwent a fiber-optic endoscopic evaluation of swallowing (FEES) and their dysphagia was scored by means of the Dysphagia Outcome Severity Scale (DOSS). DYMUS showed a relatively high level of internal consistency (Cronbach's alpha 0.79). A significant positive correlation was found between the DYMUS and the EAT-10 scores (p < 0.001), while a negative correlation was found between the DYMUS and the DOSS scores (p < 0.001). DYMUS showed a good sensitivity and specificity compared to FEES for detecting dysphagia (area under the curve: 0.82, p < 0.001). The ROC curve analysis showed that a DYMUS score >= 6 represents a reliable cut-off for the risk of dysphagia. The DYMUS questionnaire proved to be a reliable screening tool to detect dysphagia in patients suffering from PD. It is easy to understand, it can be self-administered and therefore adequate for adoption in the clinical practice with the more convenient name of DYPARK
    • …
    corecore