1,338 research outputs found

    Broadband multi-wavelength campaign on PKS 2005-489

    Full text link
    The spectral energy distribution (SED) of high-frequency peaked BL Lac objects (HBL) is characterized by two peaks: one in the UV-X-ray and one in the GeV-TeV regime. An interesting object for analyzing these broadband characteristics is PKS 2005-489, which in 2004 showed the softest TeV spectrum ever measured. In 2009, a multi-wavelength campaign has been conducted with, for the first time, simultaneous observations by H.E.S.S. (TeV), Fermi/LAT (GeV), RXTE (keV), Swift (keV, UV, optical) and ATOM (optical) to cover the two peaks of the SED. During this campaign PKS 2005-489 underwent a high state in all wavebands which gives the opportunity to study in detail the emission processes of a high state of this interesting HBL.Comment: 2009 Fermi Symposium; eConf Proceedings C09112

    New AGNs discovered by H.E.S.S

    Full text link
    During the last year, six new Active Galactic Nuclei (AGN) have been discovered and studied by H.E.S.S. at Very High Energies (VHE). Some of these recent discoveries have been made thanks to new enhanced analysis methods and are presented at this conference for the first time. The three blazars 1ES 0414+009, SHBL J001355.9-185406 and 1RXS J101015.9-311909 have been targeted for observation due to their high levels of radio and X-ray fluxes, while the Fermi/LAT catalogue of bright sources triggered the observation of PKS 0447-439 and AP Librae. Additionally, the BL Lac 1ES 1312-423 was discovered in the field-of-view (FoV) of Centaurus A thanks to the large exposure dedicated by H.E.S.S. to this particularly interesting source. The newly-discovered sources are presented here and in three companion presentations at this conference.Comment: 8 pages, 3 figures, proceeding from the 25th Texas Symposium on Relativistic Astrophysics (Heidelberg, Germany, 2010

    Study of continuum nuclear structure of 12C via (p,p'X) at intermediate energies

    Full text link
    The inclusive 12C(p,p') and exclusive 12C(p,p'X) reactions have been studied with a beam energy of 156 MeV and for X = p and alpha. The study focuses on the (p,p'X) reaction mechanism and on the structure of 12C just above the particle-emission threshold, 14 < E_x < 28 MeV. Cross sections were simultaneously measured for all three reactions. The exclusive data were analyzed by making multiple-peak fits of the spectra and by Legendre-polynomial fits of the angular correlations. Multiple-peak fits were also made of the inclusive spectra. The resultant cross sections were compared to theoretical calculations. An analysis of the results shows that this region of E_x consists predominantly of resonant excitations, in contradiction to the findings of previous analyses.Comment: 12 pages, 4 figures, elsart style files, submitted to Physics Letters

    The H.E.S.S. extragalactic sky

    Full text link
    The H.E.S.S. Cherenkov telescope array, located on the southern hemisphere in Namibia, studies very high energy (VHE; E>100 GeV) gamma-ray emission from astrophysical objects. During its successful operations since 2002 more than 80 galactic and extra-galactic gamma-ray sources have been discovered. H.E.S.S. devotes over 400 hours of observation time per year to the observation of extra-galactic sources resulting in the discovery of several new sources, mostly AGNs, and in exciting physics results e.g. the discovery of very rapid variability during extreme flux outbursts of PKS 2155-304, stringent limits on the density of the extragalactic background light (EBL) in the near-infrared derived from the energy spectra of distant sources, or the discovery of short-term variability in the VHE emission from the radio galaxy M 87. With the recent launch of the Fermi satellite in 2008 new insights into the physics of AGNs at GeV energies emerged, leading to the discovery of several new extragalactic VHE sources. Multi-wavelength observations prove to be a powerful tool to investigate the production mechanism for VHE emission in AGNs. Here, new results from H.E.S.S. observations of extragalactic sources will be presented and their implications for the physics of these sources will be discussed.Comment: 8 pages, 6 figures, invited review talk, in the proceedings of the "International Workshop on Beamed and Unbeamed Gamma-Rays from Galaxies" 11-15 April 2011, Lapland Hotel Olos, Muonio, Finland, Journal of Physics: Conference Series Volume 355, 201

    The 2010 M 87 VHE flare and its origin: the multi-wavelength picture

    Get PDF
    The giant radio galaxy M 87, with its proximity (16 Mpc) and its very massive black hole ((3 - 6) \times 10^9 M_solar), provides a unique laboratory to investigate very high energy (E>100 GeV; VHE) gamma-ray emission from active galactic nuclei and, thereby, probe particle acceleration to relativistic energies near supermassive black holes (SMBH) and in relativistic jets. M 87 has been established as a VHE gamma-ray emitter since 2005. The VHE gamma-ray emission displays strong variability on timescales as short as a day. In 2008, a rise in the 43 GHz Very Long Baseline Array (VLBA) radio emission of the innermost region (core; extension of < 100 Rs ; Schwarzschild radii) was found to coincide with a flaring activity at VHE. This had been interpreted as a strong indication that the VHE emission is produced in the direct vicinity of the SMBH. In 2010 a flare at VHE was again detected triggering further multi-wavelength (MWL) observations with the VLBA, Chandra, and other instruments. At the same time, M 87 was also observed with the Fermi-LAT telescope at MeV/GeV energies, the European VLBI Network (EVN), and the Liverpool Telescope (LT). Here, preliminary results from the 2010 campaign will be reported.Comment: 6 pages, 2 figures; Procceedings of the workshop "High Energy Phenomena in Relativistic Outflows III" (HEPRO III), Barcelona, June 27 - July 1, 201

    Electronic Structure of Transition Metals Fe, Ni and Cu in the GW Approximation

    Full text link
    The quasiparticle band structures of 3d transition metals, ferromagnetic Fe, Ni and paramagnetic Cu, are calculated by the GW approximation. The width of occupied 3d valence band, which is overestimated in the LSDA, is in good agreement with experimental observation. However the exchange splitting and satellite in spectra are not reproduced and it is required to go beyond the GW approximation. The effects of static screening and dynamical correlation are discussed in detail in comparison with the results of the static COHSEX approximation. The dynamical screening effects are important for band width narrowing.Comment: 4 pages, 3 figure

    Dark matter powered stars: Constraints from the extragalactic background light

    Full text link
    The existence of predominantly cold non-baryonic dark matter is unambiguously demonstrated by several observations (e.g., structure formation, big bang nucleosynthesis, gravitational lensing, and rotational curves of spiral galaxies). A candidate well motivated by particle physics is a weakly interacting massive particle (WIMP). Self-annihilating WIMPs would affect the stellar evolution especially in the early universe. Stars powered by self-annihilating WIMP dark matter should possess different properties compared with standard stars. While a direct detection of such dark matter powered stars seems very challenging, their cumulative emission might leave an imprint in the diffuse metagalactic radiation fields, in particular in the mid-infrared part of the electromagnetic spectrum. In this work the possible contributions of dark matter powered stars (dark stars; DSs) to the extragalactic background light (EBL) are calculated. It is shown that existing data and limits of the EBL intensity can already be used to rule out some DS parameter sets.Comment: Accepted for publication in ApJ; 7 pages, 5 figure
    corecore