115 research outputs found

    An improved and highly sensitive microfluorimetric method for assessing susceptibility of Plasmodium falciparum to antimalarial drugs in vitro

    Get PDF
    BACKGROUND: The standard in vitro protocol currently in use for drug testing against Plasmodium falciparum, based on the incorporation of the purine [(3)H]-hypoxanthine, has two serious drawbacks. Firstly it is unsuitable for the testing of drugs that directly or indirectly impact on purine salvage or metabolism. Secondly, it relies on the use of expensive radiolabelled material, with added issues concerning detection, storage and waste disposal that make it unsuitable for use in many disease-endemic areas. Recently, the use of fluorochromes has been suggested as an alternative, but quenching of the fluorescence signal by the haemoglobin present in cultures of Plasmodium falciparum-infected erythrocytes severely limits the usefulness of this approach. METHODS: In order to resolve this problem, a new PicoGreen(®)-based procedure has been developed which incorporates additional steps to remove the interfering haemoglobin. The 50% inhibitory concentration (IC(50)) values of chloroquine and pyrimethamine against P. falciparum laboratory lines 3D7 and K1 were determined using the new protocol. RESULTS: The IC(50 )values of chloroquine and pyrimethamine against P. falciparum laboratory lines 3D7 and K1 determined with the new fluorescence-based protocol were statistically identical to those obtained using the traditional (3)H-hypoxanthine incorporation method, and consistent with literature values. CONCLUSION: The new method proved to be accurate, reproducible and sensitive, and has the advantage of being non-radioactive. The improved PicoGreen(® )method has the potential to replace traditional in vitro drug resistance assay techniques

    Susceptibility of Anopheles gambiae and Anopheles stephensi to tropical isolates of Plasmodium falciparum

    Get PDF
    Background: The susceptibility of anopheline mosquito species to Plasmodium infection is known to be variable with some mosquitoes more permissive to infection than others. Little work, however, has been carried out investigating the susceptibility of major malaria vectors to geographically diverse tropical isolates of Plasmodium falciparum aside from examining the possibility of infection extending its range from tropical regions into more temperate zones. Methods: This study investigates the susceptibility of two major tropical mosquito hosts (Anopheles gambiae and Anopheles stephensi) to P. falciparum isolates of different tropical geographical origins. Cultured parasite isolates were fed via membrane feeders simultaneously to both mosquito species and the resulting mosquito infections were compared. Results: Infection prevalence was variable with African parasites equally successful in both mosquito species, Thai parasites significantly more successful in An. stephensi, and PNG parasites largely unsuccessful in both species. Conclusion: Infection success of P. falciparum was variable according to geographical origin of both the parasite and the mosquito. Data presented raise the possibility that local adaptation of tropical parasites and mosquitoes has a role to play in limiting gene flow between allopatric parasite populations

    Gametocyte Sex Ratio: The Key to Understanding Plasmodium falciparum Transmission?

    Get PDF
    A mosquito needs to ingest at least one male and one female gametocyte to become infected with malaria. The sex of Plasmodium falciparum gametocytes can be determined microscopically but recent transcriptomics studies paved the way for the development of molecular methods that allow sex-ratio assessments at much lower gametocyte densities. These sex-specific gametocyte diagnostics were recently used to examine gametocyte dynamics in controlled and natural infections as well as the impact of different antimalarial drugs. It is currently unclear to what extent sex-specific gametocyte diagnostics obviate the need for mosquito feeding assays to formally assess transmission potential. Here, we review recent and historic assessments of gametocyte sex ratio in relation to host and parasite characteristics, treatment, and transmission potential

    Varying efficacy of artesunate+amodiaquine and artesunate+sulphadoxine-pyrimethamine for the treatment of uncomplicated falciparum malaria in the Democratic Republic of Congo: a report of two in-vivo studies

    Get PDF
    BACKGROUND: Very few data on anti-malarial efficacy are available from the Democratic Republic of Congo (DRC). DRC changed its anti-malarial treatment policy to amodiaquine (AQ) and artesunate (AS) in 2005. METHODS: The results of two in vivo efficacy studies, which tested AQ and sulphadoxine-pyrimethamine (SP) monotherapies and AS+SP and AS+AQ combinations in Boende (Equatorial province), and AS+SP, AS+AQ and SP in Kabalo (Katanga province), between 2003 and 2004 are presented. The methodology followed the WHO 2003 protocol for assessing the efficacy of anti-malarials in areas of high transmission. RESULTS: Out of 394 included patients in Boende, the failure rates on day 28 after PCR-genotyping adjustment of AS+SP and AS+AQ were estimated as 24.6% [95% CI: 16.6-35.5] and 15.1% [95% CI: 8.6-25.7], respectively. For the monotherapies, failure rates were 35.9% [95% CI: 27.0-46.7] for SP and 18.3% [95% CI: 11.6-28.1] for AQ. Out of 207 patients enrolled in Kabalo, the failure rate on day 28 after PCR-genotyping adjustment was 0 [1-sided 95% CI: 5.8] for AS+SP and AS+AQ [1-sided 95% CI: 6.2]. It was 19.6% [95% CI: 11.4-32.7] for SP monotherapy. CONCLUSION: The finding of varying efficacy of the same combinations at two sites in one country highlights one difficulty of implementing a uniform national treatment policy in a large country. The poor efficacy of AS+AQ in Boende should alert the national programme to foci of resistance and emphasizes the need for systems for the prospective monitoring of treatment efficacy at sentinel sites in the country

    The impact of low erythrocyte density in human blood on the fitness and energetic reserves of the African malaria vector Anopheles gambiae

    Get PDF
    Background Anaemia is a common health problem in the developing world. This condition is characterized by a reduction in erythrocyte density, primarily from malnutrition and/or infectious diseases such as malaria. As red blood cells are the primary source of protein for haematophagous mosquitoes, any reduction could impede the ability of mosquito vectors to transmit malaria by influencing their fitness or that of the parasites they transmit. The aim of this study was to determine the impact of differences in the density of red blood cells in human blood on malaria vector (Anopheles gambiae sensu stricto) fitness. The hypotheses tested are that mosquito vector energetic reserves and fitness are negatively influenced by reductions in the red cell density of host human blood meals commensurate with those expected from severe anaemia. Methods Mosquitoes (An. gambiae s.s.) were offered blood meals of different packed cell volume(PCV) of human blood consistent with those arising from severe anaemia (15%) and normalPCV (50%). Associations between mosquito energetic reserves (lipid, glucose and glycogen)and fitness measures (reproduction and survival) and blood meal PCV were investigated. Results The amount of protein that malaria vectors acquired from blood feeding (indexed by haematin excretion) was significantly reduced at low blood PCV. However, mosquitoes feeding on blood of low PCV had the same oviposition rates as those feeding on blood of normal PCV, and showed an increase in egg production of around 15%. The long-term survival of An. gambiae s.s was reduced after feeding on low PCV blood, but PCV had no significant impact on the proportion of mosquitoes surviving through the minimal period required to develop and transmit malaria parasites (estimated as 14 days post-blood feeding). The impact of blood PCV on the energetic reserves of mosquitoes was relatively minor. Conclusions These results suggest that feeding on human hosts whose PCV has been depleted due to severe anaemia does not significantly reduce the fitness or transmission potential of malaria vectors, and indicates that mosquitoes may be able exploit resources for reproduction more efficiently from blood of low rather than normal PCV

    Therapeutic efficacy of sulphadoxine-pyrimethamine and chloroquine for the treatment of uncomplicated malaria in pregnancy in Burkina Faso

    Get PDF
    BACKGROUND: A reduction in the therapeutic efficacy of chloroquine (CQ) and sulphadoxine-pyrimethamine (SP) has recently been observed in Burkina Faso. As these two drugs are used in pregnancy, their efficacy in pregnant women was studied to directly assess the level of drug resistance in this specific population, rather than to extrapolate results of studies conducted in children < 5 years of age. METHODS: During the malaria transmission season of 2003 in Ouagadougou, the clinical efficacy of SP and CQ, using the WHO 28-day protocol, was assessed in primigravidae and secundigravidae presenting with uncomplicated malaria. RESULTS: PCR-corrected results by day 28 showed that among 62 women treated with SP, eight (12.9%) experienced late parasitological failure, but no clinical failures. Among 60 women treated with CQ, the overall failure rate was 46.7% including 1.7% early treatment failures, 5% late clinical failures and 40% late parasitological failures. SP induced a haemoglobin gain of 0.3 g/dL by day 14 and 0.9 g/dL by day 28. Treatment responses were independent of gravidity, gestational age and prior antenatal care visits. CONCLUSION: While CQ should no longer be used, the efficacy of SP is still compatible with use for intermittent preventive treatment (IPT) in pregnancy. However, given the possible spread of resistance, the drug should be restricted in its use

    Development of a TaqMan Allelic Discrimination Assay for detection of Single Nucleotides Polymorphisms associated with anti-malarial drug resistance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anti-malarial drug resistance poses a threat to current global efforts towards control and elimination of malaria. Several methods are used in monitoring anti-malarial drug resistance. Molecular markers such as single nucleotide polymorphism (SNP) for example are increasingly being used to identify genetic mutations related to anti-malarial drug resistance. Several methods are currently being used in analysis of SNP associated with anti-malarial drug resistance and although each one of these methods has unique strengths and shortcoming, there is still need to improve and/or develop new methods that will close the gap found in the current methods.</p> <p>Methods</p> <p>TaqMan Allelic Discrimination assays for detection of SNPs associated with anti-malarial drug resistance were designed for analysis on Applied Biosystems PCR platform. These assays were designed by submitting SNP sequences associated with anti-malarial drug resistance to Applied Biosystems website. Eleven SNPs associated with resistance to anti-malarial drugs were selected and tested. The performance of each SNP assay was tested by creating plasmid DNAs carrying codons of interests and analysing them for analysis. To test the sensitivity and specificity of each SNP assay, 12 clinical samples were sequenced at codons of interest and used in the analysis. Plasmid DNAs were used to establish the Limit of Detection (LoD) for each assay.</p> <p>Results</p> <p>Data from genetic profiles of the <it>Plasmodium falciparum </it>laboratory strains and sequence data from 12 clinical samples was used as the reference method with which the performance of the SNP assays were compared to. The sensitivity and specificity of each SNP assay was establish at 100%. LoD for each assay was established at 2 GE, equivalent to less than 1 parasite/μL. SNP assays performed well in detecting mixed infection and analysis of clinical samples.</p> <p>Conclusion</p> <p>TaqMan Allelic Discrimination assay provides a good alternative tool in detection of SNPs associated with anti-malarial drug.</p

    Host candidate gene polymorphisms and clearance of drug-resistant Plasmodium falciparum parasites

    Get PDF
    Resistance to anti-malarial drugs is a widespread problem for control programmes for this devastating disease. Molecular tests are available for many anti-malarial drugs and are useful tools for the surveillance of drug resistance. However, the correlation of treatment outcome and molecular tests with particular parasite markers is not perfect, due in part to individuals who are able to clear genotypically drug-resistant parasites. This study aimed to identify molecular markers in the human genome that correlate with the clearance of malaria parasites after drug treatment, despite the drug resistance profile of the protozoan as predicted by molecular approaches

    Impact of repeated four-monthly anthelmintic treatment on Plasmodium infection in preschool children: a double-blind placebo-controlled randomized trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Helminth infections can alter susceptibility to malaria. Studies need to determine whether or not deworming programs can impact on <it>Plasmodium </it>infections in preschool children.</p> <p>Methods</p> <p>A double-blind placebo-controlled randomised trial was conducted to investigate the impact of anthelmintic treatment on <it>Plasmodium </it>infection in children aged 12-59 months. Children were randomly assigned to receive either albendazole or placebo every four months for 12 months with a follow-up at 14 months.</p> <p>Results</p> <p>320 children (out of 1228, 26.1%) complied with all the follow-up assessments. <it>Plasmodium </it>prevalence and mean <it>Plasmodium </it>parasite density was significantly higher in the treatment group (44.9% and 2319 ± SE 511) compared to the placebo group (33.3% and 1471 ± 341) at baseline. The odds of having <it>Plasmodium </it>infection increased over time for children in both the placebo and treatment groups, however this increase was significantly slower for children in the treatment group (P = 0.002). By month 14, mean <it>Plasmodium </it>density had increased by 156% in the placebo group and 98% in the treatment group but the rate of change in <it>Plasmodium </it>density was not significantly different between the groups. The change from baseline in haemoglobin had a steeper increase among children in the treatment group when compared to the placebo group but this was not statistically significant.</p> <p>Conclusions</p> <p>Repeated four-monthly anthelminthic treatments for 14 months resulted in a significantly lower increase in the prevalence of <it>Plasmodium </it>infection in preschool children which coincided with a reduction in both the prevalence and intensity of <it>A. lumbricoides </it>infections.</p> <p>Trial Registration</p> <p>Current controlled trials ISRCTN44215995</p
    corecore