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Review

Gametocyte Sex Ratio: The Key to
Understanding Plasmodium falciparum
Transmission?

Fitsum G. Tadesse,1,2,3,6 Lisette Meerstein-Kessel,1,6 Bronner P. Gonçalves,4 Chris Drakeley,4

Lisa Ranford-Cartwright,5 and Teun Bousema1,4,*

A mosquito needs to ingest at least one male and one female gametocyte to
become infected with malaria. The sex of Plasmodium falciparum gametocytes
can be determined microscopically but recent transcriptomics studies paved
the way for the development of molecular methods that allow sex-ratio assess-
ments at much lower gametocyte densities. These sex-specific gametocyte
diagnostics were recently used to examine gametocyte dynamics in controlled
and natural infections as well as the impact of different antimalarial drugs. It is
currently unclear to what extent sex-specific gametocyte diagnostics obviate
the need for mosquito feeding assays to formally assess transmission potential.
Here, we review recent and historic assessments of gametocyte sex ratio in
relation to host and parasite characteristics, treatment, and transmission
potential.

Sexual Commitment and First Appearance of Male and Female P.
falciparum Gametocytes
The transmission of malaria from human to mosquito depends on the presence of game-
tocytes (see Glossary), sexual-stage Plasmodium parasites, in the peripheral blood. The
development of gametocytes of P. falciparum takes 8–12 days and it involves transitions from
committed rings, via early and intermediate stage gametocytes that are sequestered in the
bone marrow and spleen (stages I–IV) [1–3], to mature male and female stage V gametocytes
[4]. In other Plasmodium species, such as P. vivax, P. chabaudi, P. vinckei, and P. gallinaceum,
gametocytes develop much more rapidly, typically within 3 days [5]. In controlled human
malaria infections (CHMIs) less than 10% of all asexual P. falciparum parasites commit to
form gametocytes [6,7], and mature gametocytes typically comprise less than 5% of the
circulating parasite biomass in natural infections [8]. Sexual commitment happens before the
stage of schizogony [9–12], and all merozoites derived from one schizont develop into either
microgametocytes (males) or macrogametocytes (females) [13,14]. The lack of sex chromo-
somes in haploid Plasmodium hampers our understanding of the commitment to sexual
differentiation and the timing of sex determination [15]. Sex determination could occur at
the same moment when commitment to sexual differentiation is determined [13], or alternatively
via a two-stage process in which sex determination happens after the decision on commitment
to sexual differentiation. At the molecular level, the nuclear protein P. falciparum gametocyte
development 1 (GDV1) triggers the first known part of the molecular cascade of commitment
and acts as the upstream regulator of the DNA-binding protein AP2-G (PF3D7_1222600), by
antagonizing heterochromatin protein 1 repression of AP2-G transcription [16]. Sufficient
activation of AP2-G, the master transcriptional regulator of gametocytogenesis, represents
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Glossary
Controlled human malaria
infection (CHMI): deliberate
infection of a healthy noninfected
human volunteer with malaria under
highly standardized conditions.
Infection happens either by
intravenous inoculation of
Plasmodium-infected erythrocytes or
through the bite of sporozoite-
infected mosquitoes. Upon reaching
blood-stage infection, the volunteer
receives treatment. In CHMI models
aiming to study gametocyte
development, treatment aims to
eliminate asexual parasite replication
while allowing gametocytes to
develop and mature.
Gametes: sexually dimorphic
parasite forms that develop from
gametocytes activating in the
mosquito gut. Female gametocytes
give rise to a single female gamete
(macrogamete), male gametocytes
give rise to up to eight motile
microgametes; each female gamete
may be fertilized by a male
microgamete.
Gametocyte: the sexual stage
malaria parasite capable of
reproduction in the mosquito. Female
and male gametocytes circulate in
the human peripheral blood, where
they may be ingested by blood-
feeding Anopheles mosquitoes and
continue sexual development (see
Gametes).
Mosquito feeding assay: an assay
for determining the infectiousness of
Plasmodium gametocytes to
Anopheles mosquitoes. Mosquito
feeding assay may refer to an assay
in which mosquitoes are allowed to
feed on the patient’s blood (skin
feeding or direct membrane feeding
assay after venous blood was drawn)
or on cultured gametocytes
(standard membrane feeding assay).
Proportion of male gametocytes:
the proportion or percentage of all
gametocytes that is male

male gametocytes
maleþfemale gametocytes

� �
.

Proteomics: studies that capture
the entirety of proteins of a cell or
organism, often at a certain life
stage. Proteomics is usually based
on mass spectrometry.
Schizogony/erythrocytic
schizogony: creation of, on
average, 16–32 merozoites in an
infected red blood cell during the
schizont stage of asexual replication.

the ‘point of no return’ in commitment to both male and female gametocytes [11,17,18]. The
molecular basis of sex determination, and its timing during development, is currently unknown.

Here, we summarize historic and recent estimates of gametocyte sex ratio in natural infections
and the limitations of older estimates that relied on microscopy. We present the merits and
limitations of molecular tools for quantifying gametocyte sex ratio and review evidence for a sex-
specific effect of antimalarial drugs on circulating gametocytes and the implications for malaria
transmission potential.

Microscopy Is an Imperfect Tool for Quantifying Gametocyte Sex Ratio
In natural infections of P. falciparum, the sex ratio of circulating gametocytes is mostly
female biased [19]. Only a few epidemiological studies have quantified female and male
gametocytes separately with sex ratios ranging from a mean of �three to five females to one
male (Table 1) [20–23]. Previously reported sex ratios are based mainly on microscopic
examination of Giemsa-stained thick or thin blood smears, relying on subtle morphological
differences between mature (stage V) macrogametocytes and microgametocytes [24]
(Figure 1). Gametocyte sex determination by microscopy is challenging due to the typically
low gametocyte densities and the difficulty of allocating a sex to the sparsely observed
gametocytes [22,25–28]. As an illustration  of their sparseness, in a recent detailed study on
gametocyte carriage in Burkina Faso, only 20% (95% confidence interval [CI] 14–27%) of
patent asexual parasite carriers had microscopically detected gametocytes, and only 7%
(95% CI 4–12%) had more than two gametocytes observed whilst enumerating against a
conventional number of 500 white blood cells (�0.06 ml of blood microscopically screened)
[29]. The implications of low observed gametocyte counts for sex ratio precision are
presented in Figure 1, indicating that observations based on 500 white blood cells can
rarely lead to accurate gametocyte sex ratio estimates. Only by observing 50–100 game-
tocytes can a reproducible sex ratio be calculated (Figure 1D) [8,19], and this is hardly ever
attainable by routine microscopy. Microscopic investigation of gametocyte sex can be
improved by concentrating gametocytes with magnetic enrichment [30], assuming it
enriches male and female gametocytes equally, allowing more gametocytes to be exam-
ined. The accuracy of differentiating male and female gametocytes can be further improved
by targeting proteins or transcripts that are preferentially expressed in a specific sex using
immunofluorescence or probe-based hybridization assays, respectively. Assays that target
stage-specific expression of transcripts, such as Pf77 (PF3D7_0621400) and Pfg377
(PF3D7_1250100), both enriched in female gametocytes [31,32] and Pfg27
(PF3D7_1302100, detecting both sexes) [33,34] have been reported previously. Immuno-
fluorescence assays based on antibodies that bind proteins specific for early gametocytes
such as Pfs16 (PF3D7_0406200) [14,35], male gametocytes (a-tubulin II, PF3D7_0422300)
[13,14,36], or female gametocytes (Pfg377, PF3D7_1250100) [13] have also been used.
Insights into sex differences in the transcriptional and proteomic makeup are summarized in
Box 1. These immunofluorescent assays alleviate common problems that complicate
microscopic examination but their reliance on fluorescence microscopy greatly affects
their deployment in the field. The recent development of molecular assays to quantify male
and female gametocytes may allow more robust sex ratio determination at low gametocyte
densities and easier application in field settings.

New Molecular Techniques Improve Sex Ratio Quantification
Gametocyte detection has been improved in the last decade with the introduction and wider
use of molecular detection tools. Baker et al. reported the first molecular assay for an indirect
detection of gametocyte sexes based on in situ hybridization using a Pf77 RNA probe that
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targeted female gametocytes [31]. Assays were subsequently developed targeting the Pfs25
(PF3D7_1031000) transcript, which was considered highly specific for mature gametocytes,
using qRT-PCR [37,38] or real-time quantitative nucleic acid sequence-based amplification
(QT-NASBA) [39]. Whilst highly sensitive, with an estimated sensitivity around 0.1 gametocytes
per ml in 50–100 ml blood samples, this marker (Pfs25) has recently been shown to be
expressed predominantly by female gametocytes [40,41]. Drew and Reece reported the first
molecular approach to gametocyte sex ratio determination [28] in the rodent malaria parasite
Plasmodium chabaudi using targets that were previously described in a proteomics study in
Plasmodium berghei [42], based on the quantification of total gametocytes by common
gametocyte gene 1 (CG1 or PSOP1: PCHAS_0620900) RNA, and male gametocytes by
the male gametocyte-specific gene 1 (MG1, a putative dynein heavy chain: PCHAS_0417000).
Schneider and colleagues [40] reported the first qRT-PCR assays that quantify female and male
gametocytes in P. falciparum through quantification of a combination of female-enriched
(Pfs25) and male-enriched (Pfs230p) transcripts. The higher limit of detection for male (1.8
male gametocytes/ml) compared to female gametocytes (0.3 female gametocytes/ml) in this
assay, and the typical female bias in natural infections, may affect the sensitivity of sex ratio
determination at low gametocyte densities. Recently, additional male gametocyte-enriched
transcripts (Pf13, PF3D7_1311100 and PfMGET, PF3D7_1469900) were identified that
improved the detection limit of male gametocytes to the level comparable with female game-
tocytes [34,43]. Details of all currently used transcripts for quantifying male and female
gametocytes are provided in Box 2. Of note, none of the gametocyte markers are exclusively
expressed in gametocytes of one sex [34,43], and low levels of ‘gametocyte transcripts’ are
also detectable in asexual-stage parasites [44]. The latter has implications for earlier statements
on the high prevalence of gametocytes in P. falciparum-infected individuals. Whilst it remains
plausible that (nearly) all infections produce gametocytes [6,7], the initial wave of high asexual
parasitemia that is observed in clinical malaria cases may coincide with false-positive gameto-
cyte signals. This may result in an overestimation of gametocyte prevalence at the moment of
sampling, in particular in clinical malaria cases [19].

Sex Ratio Plasticity in Response to a Changing Environment
Recently, molecular methods to accurately sex gametocytes have been used to assess the
first appearance of mature male and female gametocytes after experimental infections.
Gametocyte appearance is estimated to occur 10 days post blood-stage inoculum [6] or
8.5–12 days after the first detection of asexual parasites in the peripheral blood [7], support-
ing previous suggestions of gametocyte commitment during the first erythrocytic cycle of
asexual parasites [45,46]. During infections, malaria parasites may respond to environmental
cues to alter their investment into the transmission stages (reviewed in [19]). In addition to an
overall increased investment in gametocytes [47,48], malaria parasites may adjust their sex
ratio to maximize the transmission success when under stress, such as that induced by
immunity developing as the infection progresses. In an early observation of an individual
deliberately infected with P. falciparum, the sex ratio changed from female biased to equal
sexes over 13 days [49].

Data from the avian parasite Plasmodium gallinaceum and rodent malaria Plasmodium
vinckei further suggest that the sex ratio in Plasmodium infections varies substantially
during the course of an infection [50,51], possibly in response to the host’s immune
response, anemia, and gametocyte density [50,52,53]. A change in concentration of
erythropoietin, a hormone that controls erythrocyte production, causes an increase in
the proportion of male gametocytes in P. vinckei and increases overall gametocyte
density in P. gallinaceum [54] and P. chabaudi [55].

Schizogony is a rapid process in P.
falciparum (�48 h), and should not
be confused with liver-stage
(exoerythrocytic) schizogony in
hepatocytes, which takes 6–7 days
and produces thousands of
merozoites.
Sex determination: used to
describe the ‘decision’ to become
either a male or female gametocyte,
plausibly determined at the same
time when sexual commitment
happens.
Sex ratio: the ratio of male to female
gametocytes male gametocytes

female gametocytes

� �
. This

term is used inconsistently in the
literature, referring to either sex,
dependent on context. In the
current review, we instead use the
proportion of male gametocytes.
Sexual commitment: the route to
the differentiation into a gametocyte,
thereby leaving the asexual
replication cycle. The exact timing of
commitment is not entirely
understood, but all merozoites
derived from one committed schizont
will develop into gametocytes of one
sex.
Transcriptomics: studies that
capture the entirety of transcripts of
a cell or organism, often at a certain
life stage. Transcriptomics is usually
based on microarrays or RNA
sequencing.
Translational repression: a
phenomenon in which mRNA
transcripts are not (yet) translated
into proteins but accumulated and
protected from degradation. Stored
transcripts frequently support cellular
processes immediately after
fertilization when translation is
needed but transcription is low or
absent.
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Competition between parasites of different genotype can also affect sex ratio. Hamilton’s
theory of ‘local mate competition’ (LMC) [56] states that female-biased sex ratios are optimal
when genetically-related males compete for mates; the optimal sex ratio for malaria parasites
depends on the rate of self-fertilization (inbreeding rate), where sex ratio (here: proportion of
male gametocytes) = (1 � f)/2, and f is Wright’s inbreeding coefficient [57]. When individuals are
infected with a single or a low number of distinct parasite genotypes, inbreeding will be high and
a female-biased sex ratio is predicted. As inbreeding levels fall with increased diversity of
parasite genotypes within the infection, the optimal sex ratio will approach 0.5. In an experi-
mental test of this theory, using the rodent malaria P. chabaudi where genetic diversity was
adjusted deliberately, sex ratio became more male-biased as the number of genotypes present
increased [52].

The effect of sex ratio on transmission success may depend on total gametocyte density [23]. In
low-density infections, a larger investment in male gametocytes is favorable to increase the

Table 1. Summary of Studies That Evaluated Sex Ratio in Natural Infections

Setting Population Proportion malea Tool Refs

Mali, Burkina Faso, Cameroon Asymptomatic gametocyte carriers 0.14–0.51 qRT-PCR [23]

The Netherlands Controlled human malaria infection volunteers 0.29 qRT-PCR [7]

Mali Asymptomatic gametocyte carriers 0.30 qRT-PCR [62]

Australia Controlled human malaria infection volunteers 0.20 qRT-PCR [6]

Kenya, Mali Asymptomatic gametocyte carriers 0.36 qRT-PCR [34]

Nigeria Symptomatic malaria patients 0.21 Microscopy [75]

Nigeria Symptomatic children 0.34 Microscopy [87]

Nigeria Symptomatic malaria patients 0.22 Microscopy [88]

Nigeria Symptomatic malaria patients 0.75 Microscopy [76]

India Symptomatic malaria patients 0.31 Microscopy [89]

Nigeria Symptomatic malaria patients 0.20 Microscopy [78]

Nigeria Symptomatic malaria patients 0.05 Microscopy [90]

Nigeria Symptomatic malaria patients 0.14 Microscopy [91]

Senegal Symptomatic children 0.15 Microscopy [92]

Senegal Total population 0.35 Microscopy [93]

Nigeria Asymptomatic children 0.42 Microscopy [77]

Tanzania Not applicableb 0.34 Indirect: calculated from inbreeding coefficient [94]

The Gambia Not applicablec 0.22 Indirect: calculated from inbreeding coefficient [94]

Sudan Not applicabled 0.07 Indirect: calculated from inbreeding coefficient [94]

Cameroon Symptomatic malaria patients 0.22 Microscopy [22]

Papua New Guinea Not applicableb 0.04 Indirect: calculated from inbreeding coefficient [95]

Papua New Guinea Not indicated 0.18 Microscopy [96]

aProportion male is defined as the proportion of all gametocytes that is male, [male gametocytes/(male + female gametocytes)].
bInbreeding coefficients calculated directly from oocyst selfing rates from mosquitoes.
cInbreeding coefficients calculated from allele frequencies in blood-stage infections, but sex ratios not determined in these patients. Patients were symptomatic
children.

dInbreeding coefficients calculated from allele frequencies in blood-stage infections, but sex ratios not determined in these patients. Patients were symptomatic children
and adults.
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chance that all females are fertilized [58,59]. As male gametocytes can produce up to eight
microgametes upon activation, female-biased gametocyte sex ratios contribute to a more
balanced number of macro- and microgametes in the mosquito midgut [51]. At high gameto-
cyte densities, a male-biased sex ratio leads to less efficient transmission [60], favoring a less
male-biased ratio. Recently, molecular gametocyte sex ratio assays supported the density-
dependency of sex ratio with a higher proportion of male gametocytes in low-density infections
[23]. The same study also suggested that quantifying male and female gametocytes allowed a
better prediction of mosquito infection rates as compared to previous estimates that quantified
female gametocytes only [61], and that the number of male gametocytes may become a limiting
factor in determining transmission success at low densities. These findings require replication,
but potentially have important implications for gametocyte diagnostics. If male gametocytes are
indeed a limiting factor for transmission, diagnostics that quantify male gametocytes might be
better indicators of transmission potential than female gametocyte diagnostics that are cur-
rently most widely used.
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Figure 1. Intensive Microscopy-Based Quantification of Gametocyte Sex Ratio. In this figure, we use data generated by one of the authors (C.D.) in 1992–
1993 to illustrate the likely error in gametocyte sex ratio estimation when determining the sex of only a few gametocytes per sample as routinely done in epidemiological
studies. Briefly, 100–500 gametocytes were sexed per blood smear in 53 samples from 43 individuals living in malaria-endemic regions in The Gambia, and sex-specific
counts were recorded in groups of 10 gametocytes. Light microscopy images of male and female gametocytes stained with Giemsa’s stain are shown in (A) for
illustration. Female gametocytes are blue/violet (as opposed to pink males), more crescent-shaped, and have more compact nuclei and more centrally located pigment.
In (B), x coordinates represent data from different samples, partially transparent to allow visualization of overlapping data points: red crosses (left y axis) correspond to
the proportions of gametocytes identified as male-based on data from groups of 10 gametocytes or the total number of gametocytes, respectively; light blue bars
represent the difference (right y axis) between the proportion of male gametocytes when considering only the first 10 gametocytes observed in each smear versus the
proportion calculated based on the total number of gametocytes. This difference exemplifies the error that might occur in routine measurements that quantify only a
limited number of gametocytes. In (C), the distribution of the proportion of male gametocytes in the different thick smears analyzed, based on the total number of
gametocytes, is shown. Panel (D) presents the progressive reduction in error as the number of gametocytes counted increases. In this panel, the x axis corresponds to
the cumulative number of gametocytes sexed, and the y axis corresponds to the difference in the proportion of male gametocytes relative to the same proportion when
estimated based on all gametocytes observed in the smear. Each line represents a different sample, and colors relate to the overall proportion of male gametocytes in
the smear. The rectangle delimited by the dashed lines encloses error values between �0.1 and 0.1 when 50–100 gametocytes were counted. Only data from thick
smears were used in this figure.
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Box 1. The Development of Male and Female Gametocytes

Molecular mechanisms underlying the differentiation switch towards becoming male or female gametocytes remain
largely unknown. Candidate genes that may be associated with sex-specific differentiation include the AP2-G2 in P.
berghei [18], the Puf family of translational repressors in P. falciparum [97,98], and MAPK1 and MAPK2 as potential
regulators of female and male gametocytogenesis in P. falciparum, respectively [63].

Male gametocytes are terminally differentiated forms with one last task ahead; producing motile microgametes upon
activation. Proteomic and transcriptomic data reflect this, showing upregulation of genes involved in nucleic acid
metabolism, DNA replication, and axoneme formation. Female gametocytes, on the other hand, contain many proteins
and transcripts intended for longer term sustainment of postfertilization stages, including genes involved in protein
biosynthesis, degradation, transport, and metabolic activity. Another important female gametocyte-specific mechanism
is translational repression in which stored transcripts support cellular processes immediately after fertilization, when
transcription is absent for multiple hours [99,100]. The deletion of genes involved in the maintenance of translationally
repressed mRNA transcripts, such as DOZI [101] and CITH [102] in P. berghei, results in full developmental arrest during
ookinete formation, although fertilization is successful. The first indication that translational repression is also active in P.
falciparum was obtained through deletion of Puf2, which resulted in altered expression of genes known to be
translationally repressed, such as Pfs25 and Pfs28 [103,104]. More recent proteomics and transcriptomics data have
uncovered a large-scale translational repression of hundreds of transcripts in P. falciparum female gametocytes [41].

Box 2. Marker Transcripts for Molecular Detection of Male and Female Gametocytes

Mature male and female gametocytes can be distinguished on the basis of light microscopy on Giemsa-stained thin smears [24], by electron microscopy [10,105], by
an immunofluorescence assay based on female- or male-enriched proteins and monoclonal antibodies [14,35], and by sex-enriched transcripts [31,32]. Sex is not
determined chromosomally, since haploid clone lines from a single haploid parasite can generate both male and female gametocytes [16,106]. Gametocyte
identification is thus solely based on quantification of stage-specific expression of transcripts.

Suitable targets for gametocyte diagnostics require high and stable expression of the gene in the stage and sex of interest. In Table I, the characteristics of the most
important targets for gametocyte detection and quantification are summarized. Putative gametocyte sex markers rely on abundant transcript expression at the
gametocyte stage and not in the asexual blood stage, with expression at other life stages being irrelevant. Importantly, Pfs25 expression in asexual blood-stage
parasites is not completely absent [43,44,107] but approximately 100 000-fold reduced. This estimate is similar for other reported markers [44], and hence low
gametocyte transcript numbers may be derived from asexual parasites. Gametocyte prevalence thus needs to be interpreted with caution, especially at higher
parasite burdens (above 1000 parasites/ml). The high rate of expression of some male markers (Pf13 and Pf230p) [43] in mature trophozoites raises questions on the
utility of these transcripts as differential sex-specific markers. During the dynamics of sequestration in the bone marrow and release into the peripheral blood,
transcripts derived from these stages may be detected and could affect sex-specific quantification.

Differential P. falciparum [41] and P. berghei [108] gene expression studies per sex are resources for identification of potential candidates and may be particularly
informative when integrated with asexual expression levels [109]. These studies have uncovered an increasing number of ‘sex-specific transcripts’ (Table I) that are,
however, not sex-specific in the strict sense but rather sex-enriched. The commonly used (female) gametocyte marker Pfs25 shows lower expression in male
gametocytes compared to females, ranging from 35-fold lower as detected by RNAseq [41] to 200-fold lower using qRT-PCR [44]. Of note, spurious transcript
expression in asexual parasites cannot be linked to (functional) protein expression, and so the biological relevance of transcripts of ‘gametocyte genes’ in asexual
parasites remains unknown. For any mRNA target, qRT-PCR specificity can be enhanced if an intron-spanning region is targeted, as this ensures amplification of
DNA derived from transcripts only, rather than genomic DNA, and avoids the need for DNase treatment that may decrease sensitivity of the assay through RNA
damage [110]. The reliability of sex ratio determination can be further enhanced by multiplexing targets with the above features in one assay. For example, a
multiplexed qRT-PCR that targets female gametocyte-specific (PF3D7_0630000) and total parasite (18S rRNA) transcripts, with no DNase treatment step, was
introduced recently [111]. Similarly, a multiplex assay for male and female gametocytes with intron-spanning primers for both male (PfMGET) and female (CCp4)
targets was recently proposed as a more scalable and robust approach to molecular gametocyte sex ratio assessments.

Table I. Gametocyte- and Sex-Specific Transcripts Currently Used in Molecular Detection Methods

Gene ID name Limit of detection Description/putative function FG:MG ratioa Remarks Refs

PF3D7_1031000
Pfs25

0.01 FG/ml Zygote and ookinete surface protein, necessary for
infectivity, transmission-blocking vaccine candidate

35.58 [37,112]

PF3D7_0630000
No alias

0.3 gametocytes/ml CPW-WPC family protein 47.83 Contains nine introns [111]

PF3D7_1351600
PfGK

0.3 FG/ml Glycerol kinase 41.41 [43]
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Differences in the longevity of male and female gametocytes can also contribute to sex ratio
differences. Two studies have also hinted towards a shorter circulation time of male game-
tocytes upon clearance of the asexual progenitors [7,62], although a third study observed
identical circulation times [62]. An early study on induced P. vivax malaria also reported a
shorter lifespan of male P. vivax gametocytes [49]. The different circulation time estimates may
be influenced by differences in the ability to detect male and female gametocytes (including a
lower sensitivity of male markers [6,34]) but are potentially highly important to understand the
duration of infectiousness of gametocyte carriers. There is currently no published evidence on
differences between male and female gametocytes in maturation or longevity in vitro. Longi-
tudinal studies are needed to understand the dynamics of male and female gametocyte
densities during natural infections and their impact on transmissibility.

If Plasmodium can indeed alter sex ratio in response to environmental cues, an essential
outstanding question is what governs sex allocation. Candidate genes that may be associated
with sex-specific regulation (other than or in addition to AP2-G) include MAPK1
(PF3D7_1431500) as potential regulator of female gametocytogenesis, and MAPK2
(PF3D7_1113900) as possible regulator of male gametocytogenesis [63]. Given the 10–
12 day maturation time in P. falciparum infections and early commitment to the sexual stage
(and plausibly gametocyte sex), any response to environmental triggers must involve significant
‘planning ahead' and cross-talk between potentially very low numbers of gametocytes or
precursors. Even if environmental signals are as rapidly translated into elevated gametocyte
conversion rates as recently shown for P. chabaudi [64], it will only have an effect after full
maturation. One speculative option that would allow P. falciparum to rapidly respond to
environmental triggers is the bone marrow reservoir for gametocytes. It is conceivable that
mature gametocytes may not all be immediately released upon completion of maturation but
may be in part retained for release upon environmental stimuli.

Our understanding of environmental factors that influence gametocyte sex ratio is incomplete.
Moreover, some of the ‘known’ stimuli for overall investment in gametocyte production appear
uncertain when assessed with current methodologies [65] and thus require re-examination.
Useful markers to examine stimuli for gametocyte production and sex allocation include
parasite AP2-G transcripts [11,17,18], the host factor lysophosphatidylcholine [65] and molec-
ular markers to distinguish early gametocytes (GEXP5, PF3D7_0936600 [66,67]), immature
gametocytes (Pfs16, PF14_0748) [35], and mature gametocytes of different sexes (Table 1)

Table I. (continued)

Gene ID name Limit of detection Description/putative function FG:MG ratioa Remarks Refs

PF3D7_0903800
CCp4

0.1 FG/ml LCCL domain-containing protein, sexual-stage adhesion 38.49 Contains one intron [44]

PF3D7_0208900
Pfs230p

1.8 MG/ml Gamete surface protein, knock out has no effect on
fertilization

0.02 [40]

PF3D7_1469900
PfMGET

0.01 MG/ml Conserved Plasmodium protein, unknown function 0.02 Contains two introns [34]

PF3D7_1311100
Pf13

22 MG/ml Meiosis-specific nuclear structural protein 0.005 [43]

PF3D7_1319800
Pfg17

0.1 gametocytes/ml Conserved Plasmodium protein, unknown function 0.60 Total gametocyte marker [113]

aRatio of transcript expression as detected by RNAseq in sex-sorted gametocytes, expressed as FPKM (fragments per kilobase million) values in female over male
gametocytes [41].
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[68–70]. Potential stimuli include anemia, antimalarial treatment, host immunity, and coinfec-
tions with other Plasmodium parasites or clones [19].

Antimalarials Influence Gametocyte Sex Ratio
Malaria parasites may alter their investment in asexual replication and transmission in
response to drug pressure. Treatment with subcurative doses of antimalarial drugs has been
shown to increase the rate of gametocytogenesis in the rodent malaria parasite P. chabaudi
[71] and in laboratory strains of P. falciparum [72]. P. falciparum parasites may respond to
their proliferation state rather than directly to the presence of drugs. Drug pressure may thus
lead to an initial increased investment in asexual proliferation (aimed towards survival within
the infected host) until survival is unlikely and a terminal investment in transmission occurs
[64,73]. A direct effect of antimalarial drugs on a preferential production of male or female
gametocytes has not been reported. By comparison, there is increasing evidence that
antimalarial drugs may influence sex ratio through preferential clearance of gametocytes
of either sex. In vitro drug tests suggest that male gametocytes are more sensitive to a range
of antimalarial drugs compared to female gametocytes, with impaired male gametocyte
fitness (reduction in exflagellation) at drug concentrations that do not affect female gameto-
cyte fitness (as measured by activation into gametes) [20]. Antifolates, for example, may
disproportionately affect males by inhibiting the folate-mediated pyrimidine synthesis required
for DNA replication during exflagellation [20]. Although a sex-specific effect of antimalarial
drugs has been proposed as an explanation for the early sterilizing effect of transmission-
blocking antimalarials [74], gametocyte sex ratio assessments are not commonly incorpo-
rated in antimalarial drug efficacy clinical trials. Despite initial reports of a reduced duration of
male gametocyte carriage [75], and a relative decrease in the proportion of male gametocytes
[76] following artemisinin-combination treatment (ACT), no obvious pattern of a sex-specific
effect of ACT emerges when all available data are examined (Figure 2). On the other hand,
most available (microscopy-based) data suggest that treatment with non-ACTs (such as
sulphadoxine-pyrimethamine, amodiaquine and chloroquine) results in a male-biased sex
ratio shortly after treatment [77–79] (Figure 2). Whilst a single trial with molecular gametocyte
sexing tools did not confirm this effect for sulphadoxine-pyrimethamine plus amodiaquine
[62], it is intriguing to consider if this explains earlier observations on enhanced infectivity early
after treatment with non-ACTs [80]. Recent evidence suggests that adding a single dose of
the gametocytocidal drug primaquine to ACT is associated with male-biased sex ratios in the
first 14 days after treatment, followed by a normalization to a female-biased ratio [34,62] that
may be a consequence of gametocyte release, ongoing gametocyte production, or a longer
circulation time of female gametocytes. The most pronounced sex-specific effect may be
exerted by the gametocytocidal drug methylene blue that appears to preferentially clear male
gametocytes [62,81,82].

One important outstanding question is whether transmission potential is predictable after
treatment based on gametocyte density and sex ratio, or whether mosquito feeding assays
remain essential to predict transmission potential after treatment [74,83]. The strong associa-
tion between gametocyte density and mosquito infection rates that is observed before treat-
ment [23,84] may be retained [62,85] or lost after treatment [84]. If the quantification of
gametocyte sex ratio allows mosquito infection rates to be predicted with acceptable precision,
this may obviate the need for mosquito feeding assays in antimalarial drug trials. Another
scenario is that drugs may sterilize gametocytes, either of both sexes, or preferentially affecting
one sex, without immediately affecting their circulation time. Under this scenario mosquito
transmission assays will continue to be essential to estimate the effects of antimalarial drugs on
transmission potential.
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Figure 2. Forest Plot on Proportion of Male Gametocytes before and after Treatment. This plot summarizes available
clinical trial data on the effect of antimalarials on gametocyte sex ratio. Indicated are the proportion of gametocytes that were male
before treatment (open symbols) and after treatment (closed symbols; at day 7 post-treatment – if earlier, indicated with asterisks).
Study drugs are indicated on the y axis and grouped by nonartemisinin-based combination therapies (non-ACTs), ACTs, and drug
combinations with agametocytocidal compound. Bluesymbols indicate ashift towards males, and red indicates ashift towards more
females surviving; based on nonoverlapping confidence intervals. In most cases estimates indicate the mean and 95% confidence
interval; for two studies [34,62] it is median and interquartile range. Abbreviations: ACT, artemisinin-combination treatment; AL,
artemether-lumefantrine; AQ, amodiaquine; AS, artesunate; COT, cotrimoxazole; CQ, chloroquine; DP, dihydroartemisinin-piper-
aquine; MQ, mefloquine; P, probenecid; PQ, primaquine; PS, Pyrimethamine–sulfadoxine; SP, sulfalene–pyrimethamine. See also
[76–79,90,91].
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Concluding Remarks
The transmission of P. falciparum to mosquitoes represents a developmental bottleneck in
terms of parasite numbers; at the same time it is a very efficient process that may even increase
in efficiency once transmission intensity declines [86]. For successful fertilization in the mosquito
midgut, sufficient numbers of male and female gametocytes need to be generated during
infections. Quantifying both male and female gametocytes therefore plausibly allows a better
prediction of infectivity than the total gametocyte biomass or simple measurement of (the more
abundant) female gametocytes [23]. Quantifying the densities of male and female gametocytes
may also assist in the evaluation of the transmission-blocking properties of antimalarial drugs
but at present cannot replace mosquito feeding assays to provide definitive evidence of post-
treatment transmission potential (see Outstanding Questions). Changes in total parasite density
or gametocyte density by antimalarial drugs or other environmental factors may promote
malaria parasites to adjust their investment in transmission stages; this may be by increasing
commitment to gametocytes or by increasing the proportion of male gametocytes to maximize
transmission success [23]. Whilst of clear value in this respect, previously published assess-
ments of gametocyte sex ratio are affected by the limited sensitivity of microscopy for
gametocyte detection and sexing. With the recent development of molecular tools to enumer-
ate male and female gametocytes, presumed environmental stimuli for sex ratio adjustment
should be reconsidered. For such studies to provide reliable estimates, it is essential to
acknowledge the presence of low levels of male and female gametocyte transcripts in both
sexes and in asexual parasites, which necessitates a careful interpretation of gametocyte
prevalence estimates in samples from patients with high total parasite burden and a careful
interpretation of extreme sex ratios.
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