17,632 research outputs found
Mind the Gap: Subspace based Hierarchical Domain Adaptation
Domain adaptation techniques aim at adapting a classifier learnt on a source
domain to work on the target domain. Exploiting the subspaces spanned by
features of the source and target domains respectively is one approach that has
been investigated towards solving this problem. These techniques normally
assume the existence of a single subspace for the entire source / target
domain. In this work, we consider the hierarchical organization of the data and
consider multiple subspaces for the source and target domain based on the
hierarchy. We evaluate different subspace based domain adaptation techniques
under this setting and observe that using different subspaces based on the
hierarchy yields consistent improvement over a non-hierarchical baselineComment: 4 pages in Second Workshop on Transfer and Multi-Task Learning:
Theory meets Practice in NIPS 201
Thermal issues at the SSC
A variety of heat transfer problems arise in the design of the Superconducting Super Collider (SSC). One class of problems is to minimize heat leak from the ambient to the SSC rings, since the rings contain superconducting magnets maintained at a temperature of 4 K. Another arises from the need to dump the beam of protrons (traveling around the SSC rings) on to absorbers during an abort of the collider. Yet another category of problems is the cooling of equipment to dissipate the heat generated during operation. An overview of these problems and sample heat transfer results are given in this paper
Underwater detection of dangerous substances: status the SABAT project
The Neutron Activation Analysis (NAA) plays an exceptional role in the modern
nuclear engineering, especially in detection of hazardous substances. However,
in the aquatic environment, there are still many problems to be solved for
effective usage of this technique. We present status of SABAT (Stoichiometry
Analysis By Activation Techniques), one of the projects aiming at construction
of an underwater device for non-invasive threat detection based on the NAA
An Euler aerodynamic method for leading-edge vortex flow simulation
The current capabilities and the future plans for a three dimensional Euler Aerodynamic Method are described. The basic solution algorithm is based on the finite volume, Runge-Kutta pseudo-time-stepping scheme of FLO-57. Several modifications to improve accuracy and computational efficiency were incorporated and others are being investigated. The computer code is used to analyze a cropped delta wing at 0.6 Mach number and an arrow wing at 0.85 Mach number. Computed aerodynamic parameters are compared with experimental data. In all cases, the configuration is impulsively started and no Kutta condition is applied at sharp edges. The results indicate that with additional development and validation, the present method will be a useful tool for engineering analysis of high speed aircraft
- …
