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This paper describes the current capabilities and the future plans for a three- 
dimensional Euler Aerodynamic Method. The basic solution algorithm is based on the 
finite-volume, Runge-Kutta ' pseudo-time-stepping scheme of FLO-57. Several 
modifications to improve accuracy and computational efficiency have been incorporated 
and others are being investigated. The computer code is used to analyze a cropped 
delta wing at 0.6 Mach number and an arrow wing at 0.85 Mach number. Computed 
aerodynamic parameters are compared with experimental data. In all cases, the 
configuration is impulsively started and no Kutta condition is applied at sharp 
edges. The results indicate that with additional development and validation, the 
present method will be a useful tool for engineering analysis of high-speed aircraft. 

INTRODUCTION 

The simulation of three-dimensional vortices interacting with lifting surfaces is of 
considerable importance to aircraft designers. This problem is of special 
significance for supersonic-cruise aircraft which have highly swept slender wings. 
At moderate-to-high angles of attack, the flow invariably separates from the leading 
edges resulting in the formation of free vortices above the wing. Significant 
improvements in aerodynamic performance can be derived, as shown in Figure 1, by 
careful generation and control of these vortices. At the present time, a designer 
has to rely on extensive and costly wind/tunnel tests. The development of accurate, 
efficient, and reliable computational methods will provide a more economical means of 
designing aerospace vehicles. 

ch on leading-edge-separated-flow simulation has produced a variety of 
computational methods. At one end of the spectrum are the vortex-lattice (Refs. 1-4) 
and free-vortex-sheet methods (Refs. 5 , 6 ) .  Since they are based on a linearized 
potential-flow formulation, rotational vortex flow cannot be predicted as part of the 
solution. The leading-edge vortex has to be explicitly modeled either indirectly 
using the suction analogy of Polhamus (Ref. 7) or directly using singularity 
distributions (Refs, 4 , 5 ) .  At the other end of the spectrum are the finite-difference 
methods based on the Reynolds-averaged Navier-Stokes equations (Ref. 8) which provide 
an essentially complete f luid-dynamic model. Their use offers the major advantage 
that the leading-edge vortices result as a part of the solution. However, the 
available methods are not suitable for routine practical applications due to the 
exorbitant requirements of computational resources and the lack of a suitable 
universal turbulence modeli 

Weeent advances in numerical algorithms to solve the Euler  equations (Refs. 9,101 
provide an attractive and cost-effective alternative to using Navier-Stokes codes. 
Their ability to automatically capture regions of r o t a t i o n a l  flows has been 
demonstrated by several investigations (Refs, 11-15), I n  this paper,  the  current 
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status and planned development of a three-dimensional Euler Aerodynamic Method (TEAM) 
and its application to model leading-edge separated flow about a cropped-delta wing 
and an arrow wing are presented. 

TEAM represents a modular computational system being developed by the Eockheed- 
California Company for analyzing complete aircraft configurations. A schematic of 
the system is shown in Figure 2. This development is being partially funded by the 
U. S. Air Force Wright Aeronautical Laboratory (AFWAL)/Flight Dynamics Laboratory 
(FDL) under a three-year contract (F33615-84-C-3005). The basic features of the 
method are described in the next section. 

THREE-DIWENSIONAL EULER AERODYNAMIC METHOD 

The explicit pseudo-time-stepping, finite-volume algorithm of Jameson et al. (Ref, 
9), modified by Lockheed-California Company over the past three years, forms the 
core of the TEAM code. Jamesonfs original wing-alone code is widely known as FLO-57. 
The region surrounding a given configuration is subdivided into small cells. In each 
of the cells, the time-dependent Euler equations (in integral equation form), 
representing the mass, momentum, and energy conservation, are integrated in time 
using a multi-stage Runge-Kutta scheme. To accelerate convergence to the steady 
state, local rather than global time steps are used. Implicit residual smoothing 
(Ref. 16) further reduces the number of time steps required to reach the steady 
state. Appropriate non-reflecting boundary conditions based on Riemann invariants 
(Ref. 16) are used at the far-field boundaries and no-normal-flow conditions are used 
on the solid surface. 

The finite-volume formulation essentially decouples the flow solver from the grid 
generator. The grids can be constructed in any convenient manner; only the Cartesian 
coordinates of the nodal points are required by the solver. This aspect of the basic 
algorithm has been exploited to build the TEAM system for analyzing complete aircraft 
configurations. An overview of the four major modules (Figure 2) constituting the 
system is presented in this section. 

TEAn PREPROCESSOR MODULE 

This module will provide a capability to process geometry-definition data supplied by 
a designer in order to construct an accurate geometrical model of a configuration and 
a suitable grid on its surface. The designer-supplied data typically contain a 
series of cross-sectional curves defining various components. In some instances, the 
configuration may be geometrically defined for some other aerodynamic analysis code. 
Constructing a model that accurately reflects the information contained in this form 
is the crucial first step. A surface grid on this model forms the key input for any 
grid-generation method. Appropriate interfaces are being developed to accomplish 
these tasks using the Configuration Data Management System (CDMS), which Lockheed - 
Georgia Company is developing for the U.S. Air Force under contract F33615-84-C-3001, 

OR MODULE 

A variety of techniques, both algebraic and differential, are included in the grid- 
generator module, as shown in Figure 3. This is essential because, at the present 
time, there is no single method that can be used to generate suitable grids for a l l  
configurations. The current capabilities of the various methods are summarized in 
Figure 4. Their desirable features are also compared in the same figure. For 
instance, the algebraic Trans-Finite Interpolation ( T F I )  method is computationally 



efficient and powerful but requires considerable user interaction to generate 
suitable grids as compared to the differential-equation methods, such as the Boundary 
Integral Grid (BIG) generation method (Ref, 2 9 ) .  This automation is achieved at the 
expense of computational efficiency. The Parabolic Conformal Mapping with Shearing 
(PACMAPS) technique (Ref. 18) is computationally e f f i c i e n t  and easy  t o  use; however, 
the grids must be sf 6-H topology. The C-H grid topology is illustrated in Figure 5. 

Two diagnostic tools are crucial to the grid-generator module: Lockheedfs PLOT3D 
program for interactively displaying grids and an analytical grid checking program. 
The grid checker can automatically locate regions where the grid lines either cross 
or are highly skewed. These regions are then further examined using PLOT3D and 
modified as necessary. 

TEAn FLOW SOLVER HODULE 

As mentioned above, the flow solver is based on the finite-volume, pseudo-time- 
marching algorithm of Jameson et al. (Ref. 9). Since the mathematical and numerical 
features of the basic scheme are adequately described in References 9 and 19, they 
will not be repeated here. Several modifications have been and are being 
incorporated by Lockheed to enhance the capabilities of the solver as summarized in 
Figure 6. These modifications are briefly described below. 

Flux Computation. -- The cell-centered finite-volume scheme used for spatially 
discretizing the Euler equations expresses the time-rate of change of a flow quantity 
in a cell as the net flux through the surfaces of the cell. A variety of 
approximations can be used to numerically compute this flux. The current version of 
the code uses a strongly conservative formulation. It is compared with the original 
FLO-57 formulation in Figure 7. Quantitative improvement in accuracy is under 
investigation. 

Numerical Dissipation. -- The present finite-volume scheme reduces to a central- 
difference scheme on a uniform grid. To suppress the well-known tendency for odd and 
even point decoupling of such schemes, and to limit the generation of wiggles and 
overshoots near shock waves, blended second and fourth differences have to be added. 
The coefficient of the second-order terms is proportional to the local pressure 
gradient. Therefore, these terms are turned on only where larger amounts of 
dissipation a r e  needed,  e.g., near shocks and stagnation points. Elsewhere, the 
fourth-difference terms keep the dissipation small. 

The dissipation terms are approximated by central-difference formulas for all cells 
except those near the boundaries. In the original FLO-57 code, the contribution of 
bdirection terms (normal to the surface) was ignored for cells adjacent to the 
boundaries. This approach, designated Scheme 1 here, leads to an erroneous 
production of entropy. To eliminate this deficiency, alternative schemes have been 
incorporated. 

All those cells that do not abut the solid surface (including the ones aft of the 
trailing edge) were treated like any other interior cell. For those adjacent to the 
solid boundary, four schemes are available. The order of approximation of the Q- 
direction differences for these schemes is compared in Figure 8. An extensive 
evaluation is in progress in order to select one of these schemes for the solver, 
For the results shown in this paper, Scheme 2 is used. 

Surface Bomdary Conditions, -- On a solid surface, the no-narmal-flow boundary 
condition is imposed by setting aPX convected flux quantities to zero. Only the 
pressure on the solid surface contributes to the momentum f l u x  balance. Since 



pressure is  calculated at the cell center, one is forced to estimate its value a% the 
actual surface, This is accompLished by computing the derivative of pressure normal 
to the surface using the momentum equation: 

a - - 
p V, (11-8) n = n,V p 

where: V, n, and p are the fluid velocity, surface normal, and pressure, respect- 
ively. This derivative and the cell-centered values are then combined to determine 
the surface pressure. A precise implementation requires that all metric 
quantities and flow variables occurring in the equation above be evaluated right on 
the surface. In the original FLO-57 program, this was not done; the cell-center 
values were used instead. In the present version of the solver, three additional 
approaches may be used to obtain the desired flow variables on the actual surface: 
(1) A Taylor series expansion about the cell center, (2) Lagrange two-point 
extrapolation along the local normal direction, and (3) Averaging the cell-center 
values for cells next to the surface in the flow domain and ghost cells outside of 
the flow domain, An extensive evaluation of the different approaches is under way. 

Grid Topologies. -- The present version of the solver can accommodate single global 
grids of various topologies. The original FLO-57 solver was limited to isolated 
wings having C-H grids, whereas the 0-0 and C-0 types offer improved resolution (Ref. 
20). If a C-H mesh is used, adequate resolution near the wing tip can be obtained 
only by increasing the number of cells in the spanwise direction. It must be noted 
that none of these topologies is as suitable as the H-H when detailed flow field 
about all sections of a wing-body or wing-body-tail configuration is desired. With 
these considerations, the solver was modified to accommodate 0-0, C-0 and H-H grids, 
in addition to the C-H. 

Patched Zonal Solver. -- The development of a zonal solver is motivated by the need 
to analyze complex geometries and to improve computational efficiency. For complex 
geometries, e.g., a complete aircraft, it becomes extremely difficult to generate a 
single global grid. The difficulty is further aggravated by the necessity to cluster 
cells in regions of large flow gradients. These problems can be largely alleviated 
by dividing the flow domain into a number of zones and by constructing the grid in 
each zone independently. 

A significant improvement in computational efficiency may be achieved by using 
refined meshes in zones where large gradients in flow variables are expected and 
using relatively coarse meshes elsewhere. Work is presently under way to develop a 
solver that can accommodate patched zonal grids. The feasibility of this approach 
has been demonstrated for two dimensions by Rai (Ref. 21). 

TEAn POSTPROCESSOR NODULE 

This module is composed of sub-modules to accurately determine forces and moments 
using the flow variables computed by the solver and to graphically display surface 
pressure distributions, flow-field velocity vectors, and iso-parametric contours. 

The surface-pressure integration method for computing forces and moments is currently 
used in the code. T h i s  method is only accurate when a relatively fine grid is used. 
Small errors in surface pressures and geometry ean lead to  large errors in drag, 
Also, this approach cannot give an estimate of how the total drag  is split into lift- 
induced and wave drag. Alternative approaches are being pursued. 



For graphically displaying data, appropriate interfaces w i l l  be developed for linking 
the TEAM code with CBMS, 

A number of configurations have been analyzed using the TEAM code during its 
development to date. Results for a cropped delta wing and an arrow wing are 
presented here. For each case, the entire region is initialized to free-stream 
conditions. This is equivalent to impulsively starting the configuration. No Kutta 
condition is explicitly applied at the sharp edges. 

CROPPED DELTA WING 

This wing has a leading-edge sweep of 63 degrees, a taper ratio of 0.1, and an aspect 
ratio of 1.64. Its cross section is a NACA 63A002 airfoil. It was analyzed using the 
TEAM code at a Mach number of 0.6 and angles of attack of 8, 16, and 24 degrees. Two 
grids were used, one having 24,576 (96x16~16) cells and the other having 98,304 
(96x32~32) cells. Both were topologically C-H. The airfoil sections are defined by 
30 cells on both the upper and lower surfaces (for both grids). In the spanwise 
direction the wing is described by 10 cells for the coarse grid and 20 cells for the 
finer grid. Between the wing and the far-field, there are 16 and 32 cells for the 
two grids respectively.  he-C-curves are clustered around the wing using a control 
curve (Ref. 18). 

The computed aerodynamic forces and moments are compared with the experimental data 
(Ref. 22) in Figure 9. The overall agreement between the predictions and the 
measurements is good. The code is able to model the nonlinear nature of the flow. 
The differences between the predictions can be traced to the differences in flow 
resolution provided by the two grids. This is illustrated by cross-plane surface 
pressure distributions at x/c = 0.6 and 0.9 (where c is the root chord) shown in 
Figure 10 and the corresponding velocity vectors in Figure 11 for the 16-degree 
angle-of-attack case. The presence of a leading-edge separated vortex is clearly 
shown in Figure 11. 

One aspect of this particular configuration deserves special attention. The 
convergence history plot for the coarse mesh presented in Figure 12 shows that the 
average error (net mass-flux) is reduced by 4 orders of magnitude for all the cases. 
The fine mesh results also converge for the 8 and 16 degrees angle-of-attack cases, 
as shown in Figure 13. 

However, the fine mesh results clearly do not converge at 24 degrees angle of attack. 
It is interesting to note that the experimental data (Figure 9) shows a definite 
break in the lift-curve slope above approximately 20 degrees angle of attack; and, as 
shown by the horizontal line in Figure 9, the predicted lift oscillates about the 
experimental data. In the absence of detailed experimental data on the flow field, 
one can only speculate on the flow phenomena involved here, The leading-edge vortex 
bursting and/or massive viscous separation could be responsible. The set of computed 
cross-plane pressure distributions and velocity-vector plots shown in Figure 14 
indicate that the leading-edge vortex is essentially stable after 680 cycles at 
x/e=0.5 eross-plane; but, as shown in Figure 15, its structure and location are 
changing continuously at x/c=0.9 csoss-plane. This la t ter  f a c t  is responsible f o r  
the lack sf convergence seen in Figure 13. It would be most interesting to obtain 
more detailed experimental data and compare them to these numerical results in order 



t o  validate the pred ic t ions  o f  the code. Of course, the time histories shown here 
cannot be taken iiterally since pseudo-time marching was used and they are not time 
accurate, 

It is quite obvious from the studies to date that a refined grid is essential to the 
slmulatlsn of leading-edge vortex flows even for relatively simple wings. Additional 
studies are needed to answer the obvious question: "How refined should a grid be?" 
Lockheed is conducting such studies under an on-going cooperative program with NASA 
Langley Research Center. Since the TEAM code is being developed to analyze entire 
aircraft configurations, studies such as these will help determine the number of 
cells required to adequately predict leading-edge vortex flows on complex 
configurations. 

ARROW WING 

The next set of results is for an arrow wing with a leading-edge sweep of 71.2 
degrees, a taper ratio of 0.1, and an aspect ratio of 1.4. The wing was analyzed at 
0.85 Mach number and -4, 8, and 16 degrees angle of attack using a C-H grid having 
98,304 (96x32~32) cells. 

The computed normal force and pitching moment coefficients are compared with 
experimental data (Ref. 23) in Figure 16. Cross-plane surface pressure distributions 
are compared to experimental data for four locations in Figure 17. Velocity vector 
plots for the same locations are shown in Figure 18. Measured velocity vectors are 
not available for this configuration. However, recent advances in Laser-Doppler 
Velocimetry (Ref. 24) now make it possible to compare measured and predicted velocity 
vectors for complicated three-dimensional flow fields. 

Additional studies are under way to use even more refined grids to determine the 
source of discrepancy between the theory and measurements. Two possible sources are: 
(1) the experiments were conducted for a wing-body configuration whereas the 
computations are for an isolated wing, and (2) the present wing has a rounded leading 
edge and the point of separation may not be correctly located by the present code. 
These issues will be addressed in future studies. 

CONCLUDING RE 

The current status and proposed development of a three-dimensional Euler Aerodynamic 
Method (TEAM) were presented in this paper. Correlations of computed aerodynamic 
parameters and surface pressure distributions with experimental data indicate its 
ability to capture leading-edge separated vortices. Unlike the procedures based on 
velocity potential, it is not required to explicitly model these vortices. In 
addition, the same code can be used for analysis throughout the subsonic, transonic, 
and supersonic flight regimes. The results presented in this paper point to a need 
for more extensive validation. A number of questions, especially related to the 
effect of grid density and numerical dissipation on the solution, remain to be 
answered. With continuing development and validation, it promises to provide an 
effective engineering tool for analyzing nonlinear flows containing both shock waves 
and leading-edge-separated vortices. 



1. Lamar, J. E . ,  "Extension sf Eeading-Edge-Suction Analogy t o  Wings with 
Separated Plow Around the Side Edges at Subsonic Speeds," NASA TW R-428, 
October 1994, 

2, Lamar, J. E, and Gloss, B. B e ,  "Subsonic Aerodynamic Characteristics of 
Interacting Lifting Surfaces with Separated Plow Around Sharp edges 
Predicted by a Vortex-Lattice Method," NASA TN D-7921, September 1975. 

3. Lan, C. E. and Chang, Jen-Fu, "Calculation of Vortex Lift Effect for 
Cambered Wings by Suction Analogy," NASA CR 3449, July 1981. 

4. Mehrotra, S. C. and Lan, C. E., "A Theoretical Investigation of the 
Aerodynamics of Low-Aspect-Ratio Wings with Partial Leading-Edge 
Separation," NASA CR 145304, 1978. 

5. Johnson, F. T., Lu, P., Tinoco, E. N., and Epton, M. A., "An Improved 
Panel Method for the Solution of Three-dimensional Leading-edge Vortex 
Flows," NASA CR 3279, July 1980. 

6. Luckring, J. M., Schoonover, W. E., and Frink, N. T., "Recent Advances in 
Applying Free Vortex Sheet Theory for the Estimation of Vortex Flow 
Aerodynamics," AIAA 82-0095, 20th Aerospace Sciences Meeting, Orlando, 
Florida, January 11-14, 1982. 

7. Polhamus, E. C., I1A Concept of the Vortex Lift of Sharp Edge Delta Wings 
Based on a Leading-Edge-Suction Analogy," NASA TN D-3767, 1966. 

8. Fujii, K. and Kutler, P., "Numerical Simulation of the Leading-Edge 
Separation Vortex for a Wing and Strake-Wing Configuration," AIAA Paper 
83-1908-CP, 6th Computational Fluid Dynamics Conference, Danvers, 
Massachusetts, July 13-15, 1983. 

9. Jameson, A,, Schmidt, W., and Turkel, E., "lNumerica1 Solutions of the 
Euler Equations by Finite Volume Methods Using Runge-Kutta Time-Stepping 
Schemes," AIAA Paper 81-1259, 14th Fluid and Plasma Dynamics Conference, 
Palo Alto, California, June 23-25, 1981. 

10. Rizzi, A,, "Damped Euler Equation Method to Compute Transonic Flow Around 
Wing-Body Combinations," AIAA Journal, Vol. 20, No. 10, October 1982, pp. 
1321-1328. 

11. Hitzel, S. M. and Schmidt, W., "Slender Wings with Leading-Edge Vortex 
Separation -- A Challenge for Panel Methods and Euler Codes," AIAA Paper 
83-0562, 21st Aerospace Sciences Meeting, Reno, Nevada, January 10-13, 
1983. 

12. Raj, P. and Sikora, J. S., "Free-Vortex Flows: Recent Encounters with an 
Euler Code," AIAA Paper 84-0135, 22nd Aerospace Sciences Meeting, Reno, 
Nevada, January 9-12, 1984. 

13. Rizzi, A., iiComputer Simulation of Non-potential Flows Around Wings,'" 
Aeronautical Journal, June/July 1984, pp. 238-248. 

14* Raj, P , ,  tlCsmputationa% Simulat ion sf Free-Vortex Plows  Using An Euler 
Code," ICAS-84-1.3.1, 14th Congress of the International Council sf the 
Aeronautical Sciences, Toulouse, France, 9eptember 9-14, 1984. 



R i z z i ,  A ,  and Eriksson, L,E . ,  "Computation of Flow Around Wings Based on 
t h e  E u l e r  Equa t ions , "  Journal o f  F l u i d  Mechanics, Yo%. 148, November 1984, 
pp. 45-71, 

Jameson, A. and Baker, T. J., "Solution of the Euler Equations for Complex 
Configurations," AIAA Paper 83-1929-CP, 6th Computational Fluid Dynamics 
Conference, Danvers, Massachusetts, July 13-15, 1983. 

Sikora, J. S. and Miranda, L. R., "Boundary Integral Grid Generation 
Technique," AIAA Paper 85-4088, 3rd Applied Aerodynamics Conference, 
Colorado Springs, Colorado, October 14-16, 1985. 

Raj, P., "PACMAPS: A Three-dimensional Grid Generation Method, Version 
l.Ottt LR 30811, Lockheed-California Company, October 1984. 

Agarwal, R. K. and Deese, J. E., "Transonic Wing-Body Calculations Using 
Euler Equations," AIAA Paper 83-0501, 21st Aerospace Sciences Meeting, 
Reno, Nevada, January 10-13, 1983. 

Eriksson, L. E., "Generation of Boundary-Conforming Grids About Wing-Body 
Configurations Using Transfinite Interpolation," AIAA Journal, Vol. 20, 
No. 10, October 1982, pp. 1313-1320. 

Rai, M. M., "A Conservative Treatment of Zonal Boundaries for Euler 
Equation  calculation^,^ AIAA Paper 84-0164, 22nd Aerospace Sciences 
Meeting, Reno, Nevada, January 9-12, 1984. 

Emerson, H. F., "Wind-Tunnel Investigation of the Effect of Clipping the 
Tips of Triangular Wings of Different Thickness, Camber, and Aspect Ratio 
- Transonic Bump Method," NACA TN 3671, June 1956. 
Manro, M. E., Manning, K. J. R., Hallstaff, T. H., and Rogers, J. T., 
RTransonic Pressure Measurements and Comparison of Theory to Experiment 
for an Arrow-Wing Configuration," NASA CR-2610, August 1976. 

Novak, C. J., Huie, C. R., and Cornelius, K. C.; "Laser Velocimetry in 
Highly Three-Dimensional and Vortical Flows," Vortex Flow Aerodynamics - 
Volume I, NASA CP-2416, paper no. 7, 1986. 



es INCREASED 

@ INCREASED LANDING A N D  
T A K E 0  

@ LIGHT 

@ AERODYNA 

@ LITTLE INCREAS 
G U S T  RESPONS 

Figure 1. Benefits of vortex flow for high-speed aircraft. 
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Figure 3. Schematic of TEAM'S grid generator module. 

Figure 4. Lockheed-California Company's grid generation methods. 
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Figure 6 .  Capabilities of TEAM'S flow solver module. 
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Figure  7. Comparison of TEAM and FLO-57 convect ive f l u x  computation. 
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Figure 8 ,  Four schemes f o r  c a l c u l a t i n g  d i s s i p a t i o n  terms near a s o l i d  s u r f a c e ,  
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Figure 9. TEAM code results compared to experimental 
values for a cropped delta wing. 

F i g u r e  10. P r e d i c t e d  spanwise p r e s s u r e  d i s t r i b u t i o n s  f o r  two g r i d s ,  
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Figure 11. Cross-flow velocity vectors for two grids and two chordwise locations. 

Figure 1 2 ,  Convergence h i s t o r y  f o r  a coarse  g r i d  
(96  x 16 x 16) a t  three d i f f e r e n t  
angles of a t t ack ,  
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Figure 13. Convergence history for a fine grid 
(96  x 32 x 32) at three different 
angles of at tack. 
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F i g u r e  14, Spanwise p r e s s u r e  d i s t r i b u t i o n s  and v e l o c i t y  v e c t o r s  f o r  s i x  
d i f f e r e n t  t imes  in i n t e g r a t i o n  p r o c e s s  (x/e = . 6 ) .  
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Figure 14. Concluded 
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Figure 15, Spanwise pressure distributions and velocity vectors for six 
different times in integration process (x/c = . 9 ) ,  
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Figure 15. Concluded 
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F i g u r e  16. Computed and measured aerodynamic c o e f f i c i e n t s  f o r  an arrow wing. 
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Figure 17. Computed and measured pressure distributions for four 
spanwise locations. 
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F i g u r e  18, Computed v e l o c i t y  v e c t o r s  f o r  four  spanwlse l o c a t i o n s .  




