14,257 research outputs found
Constraining Large Scale Structure Theories with the Cosmic Background Radiation
We review the relevant 10+ parameters associated with inflation and matter
content; the relation between LSS and primary and secondary CMB anisotropy
probes; COBE constraints on energy injection; current anisotropy band-powers
which strongly support the gravitational instability theory and suggest the
universe could not have reionized too early. We use Bayesian analysis methods
to determine what current CMB and CMB+LSS data imply for inflation-based
Gaussian fluctuations in tilted CDM, hCDM and oCDM model
sequences with age 11-15 Gyr, consisting of mixtures of baryons, cold (and
possibly hot) dark matter, vacuum energy, and curvature energy in open
cosmologies. For example, we find the slope of the initial spectrum is within
about 5% of the (preferred) scale invariant form when just the CMB data is
used, and for CDM when LSS data is combined with CMB; with both, a
nonzero value of is strongly preferred ( for a 13
Gyr sequence, similar to the value from SNIa). The CDM sequence prefers
, but is overall much less likely than the flat
sequence with CMB+LSS. We also review the rosy forecasts
of angular power spectra and parameter estimates from future balloon and
satellite experiments when foreground and systematic effects are ignored.Comment: 20 pages, LaTeX, 5 figures, 2 tables, uses rspublic.sty To appear in
Philosophical Transactions of the Royal Society of London A, 1998.
"Discussion Meeting on Large Scale Structure in the Universe," Royal Society,
London, March 1998. Text and colour figures also available at
ftp://ftp.cita.utoronto.ca/bond/roysoc9
The Evolution of the Cosmic Microwave Background
We discuss the time dependence and future of the Cosmic Microwave Background
(CMB) in the context of the standard cosmological model, in which we are now
entering a state of endless accelerated expansion. The mean temperature will
simply decrease until it reaches the effective temperature of the de Sitter
vacuum, while the dipole will oscillate as the Sun orbits the Galaxy. However,
the higher CMB multipoles have a richer phenomenology. The CMB anisotropy power
spectrum will for the most part simply project to smaller scales, as the
comoving distance to last scattering increases, and we derive a scaling
relation that describes this behaviour. However, there will also be a dramatic
increase in the integrated Sachs-Wolfe contribution at low multipoles. We also
discuss the effects of tensor modes and optical depth due to Thomson
scattering. We introduce a correlation function relating the sky maps at two
times and the closely related power spectrum of the difference map. We compute
the evolution both analytically and numerically, and present simulated future
sky maps.Comment: 23 pages, 11 figures; references added; one figure dropped and minor
changes to match published version. For high-resolution versions of figures
and animations, see http://www.astro.ubc.ca/people/scott/future.htm
CMB Likelihood Functions for Beginners and Experts
Although the broad outlines of the appropriate pipeline for cosmological
likelihood analysis with CMB data has been known for several years, only
recently have we had to contend with the full, large-scale, computationally
challenging problem involving both highly-correlated noise and extremely large
datasets (). In this talk we concentrate on the beginning and end of
this process. First, we discuss estimating the noise covariance from the data
itself in a rigorous and unbiased way; this is essentially an iterated
minimum-variance mapmaking approach. We also discuss the unbiased determination
of cosmological parameters from estimates of the power spectrum or experimental
bandpowers.Comment: Long-delayed submission. In AIP Conference Proceedings "3K Cosmology"
held in Rome, Oct 5-10, 1998, edited by Luciano Maiani, Francesco Melchiorri
and Nicola Vittorio, 343-347, New York, American Institute of Physics 199
Arkansas Wheat Cultivar Performance Tests 2010-2011
Wheat cultivar performance tests are conducted each year in Arkansas by the Arkansas Agricultural Experiment Station, Department of Crop, Soil and Environmental Sciences. The tests provide information to companies developing cultivars and/or marketing seed within the state and aid the Arkansas Cooperative Extension Service in formulating cultivar recommendations for small-grain producers
Teaching Teachers for the Future (TTF) Project: Development of the TTF TPACK survey instrument
This paper presents a summary of the key findings of the TTF TPACK Survey developed and administered for the Teaching the Teachers for the Future (TTF) Project implemented in 2011. The TTF Project, funded by an Australian Government ICT Innovation Fund grant, involved all 39 Australian Higher Education Institutions which provide initial teacher education. TTF data collections were undertaken at the end of Semester 1 (T1) and at the end of Semester 2 (T2) in 2011. A total of 12881 participants completed the first survey (T1) and 5809 participants completed the second survey (T2). Groups of like-named items from the T1 survey were subject to a battery of complementary data analysis techniques. The psychometric properties of the four scales: Confidence - teacher items; Usefulness - teacher items; Confidence - student items; Usefulness- student items, were confirmed both at T1 and T2. Among the key findings summarised, at the national level, the scale: Confidence to use ICT as a teacher showed measurable growth across the whole scale from T1 to T2, and the scale: Confidence to facilitate student use of ICT also showed measurable growth across the whole scale from T1 to T2. Additional key TTF TPACK Survey findings are summarised
Computing CMB Anisotropy in Compact Hyperbolic Spaces
The measurements of CMB anisotropy have opened up a window for probing the
global topology of the universe on length scales comparable to and beyond the
Hubble radius. For compact topologies, the two main effects on the CMB are: (1)
the breaking of statistical isotropy in characteristic patterns determined by
the photon geodesic structure of the manifold and (2) an infrared cutoff in the
power spectrum of perturbations imposed by the finite spatial extent. We
present a completely general scheme using the regularized method of images for
calculating CMB anisotropy in models with nontrivial topology, and apply it to
the computationally challenging compact hyperbolic topologies. This new
technique eliminates the need for the difficult task of spatial eigenmode
decomposition on these spaces. We estimate a Bayesian probability for a
selection of models by confronting the theoretical pixel-pixel temperature
correlation function with the COBE-DMR data. Our results demonstrate that
strong constraints on compactness arise: if the universe is small compared to
the `horizon' size, correlations appear in the maps that are irreconcilable
with the observations. If the universe is of comparable size, the likelihood
function is very dependent upon orientation of the manifold wrt the sky. While
most orientations may be strongly ruled out, it sometimes happens that for a
specific orientation the predicted correlation patterns are preferred over the
conventional infinite models.Comment: 15 pages, LaTeX (IOP style included), 3 color figures (GIF) in
separate files. Minor revision to match the version accepted in Class.
Quantum Grav.: Proc. of Topology and Cosmology, Cleveland, 1997. The paper
can be also downloaded from
http://www.cita.utoronto.ca/~pogosyan/cwru_proc.ps.g
Identification of the OGLE-2003-BLG-235/MOA-2003-BLG-53 Planetary Host Star
We present the results of HST observations of the host star for the first
definitive extrasolar planet detected by microlensing. The light curve model
for this event predicts that the lens star should be separated from the source
star by ~6mas at the time of the HST images. If the lens star is a late G, K or
early M dwarf, then it will be visible in the HST images as an additional
source of light that is blended with the source image. Unless the lens and
source have exactly the same colors, its presence will also be revealed by a
systematic shift between centroids of the source plus lens in different filter
bands. The HST data indicates both of these effects: the HST source that
matches the position of the source star is 0.21 magnitudes brighter in the
ACS/HRC-F814W filter than the microlensing model predicts, and there is an
offset of ~0.7mas between the centroid of this source in the F814W and F435W
filter bands. We conclude the planetary host star has been detected in these
HST images, and this identification of the lens star enables a complete
solution of the lens system. The lens parameters are determined with a Bayesian
analysis, averaging over uncertainties in the measured parameters, interstellar
extinction, and allowing for the possibility of a binary companion to the
source star. This yields a stellar mass of M_* = 0.63(+0.07/-0.09) M_solar and
a planet mass of M_p = 2.6 (+0.8/-0.6) M_Jup at an orbital separation of 4.3
(+2.5/-0.8) AU. Thus, the lens system resembles our own Solar System, with a
planet of ~3 Jupiter-masses in a Jupiter-like orbit around a star of two-thirds
of a Solar mass. These conclusions can be tested with future HST images, which
should reveal a broadening of the blended source-plus-lens point spread
function due to the relative lens-source proper motion.Comment: 11 pages, with 3 figures. to appear in ApJ Lett (Aug 20 issue
Power filtration of CMB observational data
We propose a power filter Gp for linear reconstruction of the CMB signal from
observational maps. This Gp filter preserves the power spectrum of the CMB
signal in contrast to the Wiener filter which diminishes the power spectrum of
the reconstructed CMB signal. We demonstrate how peak statistics and a cluster
analysis can be used to estimate the probability of the presence of a CMB
signal in observational records. The efficiency of the Gp filter is
demonstrated on a toy model of an observational record consisting of a CMB
signal and noise in the form of foreground point sources.Comment: 17 pages; 4 figures; submitted to International Journal of Modern
Physic
Current cosmological constraints from a 10 parameter CMB analysis
We compute the constraints on a ``standard'' 10 parameter cold dark matter
(CDM) model from the most recent CMB and data and other observations, exploring
30 million discrete models and two continuous parameters. Our parameters are
the densities of CDM, baryons, neutrinos, vacuum energy and curvature, the
reionization optical depth, and the normalization and tilt for both scalar and
tensor fluctuations.
Our strongest constraints are on spatial curvature, -0.24 < Omega_k < 0.38,
and CDM density, h^2 Omega_cdm <0.3, both at 95%. Including SN 1a constraints
gives a positive cosmological constant at high significance.
We explore the robustness of our results to various assumptions. We find that
three different data subsets give qualitatively consistent constraints. Some of
the technical issues that have the largest impact are the inclusion of
calibration errors, closed models, gravity waves, reionization, nucleosynthesis
constraints and 10-dimensional likelihood interpolation.Comment: Replaced to match published ApJ version. More details added. 13 ApJ
pages. CMB movies and color figs at
http://www.hep.upenn.edu/~max/10par_frames.html or from [email protected]
- …