305 research outputs found

    A comparison of building value models for flood risk analysis

    Get PDF
    Quantitative flood risk analyses support decisions in flood management policies that aim for cost efficiency. Risk is commonly calculated by a combination of the three quantified factors: hazard, exposure and vulnerability. Our paper focuses on the quantification of exposure, in particular on the relevance of building value estimation schemes within flood exposure analyses on regional to national scales. We compare five different models that estimate the values of flood-exposed buildings. Four of them refer to individual buildings, whereas one is based on values per surface area, differentiated by land use category. That one follows an approach commonly used in flood risk analyses on regional or larger scales. Apart from the underlying concepts, the five models differ in complexity, data and computational expenses required for parameter estimations and in the data they require for model application.The model parameters are estimated by using a database of more than half a million building insurance contracts in Switzerland, which are provided by 11 (out of 19) cantonal insurance companies for buildings that operate under a monopoly within the respective Swiss cantons. Comparing the five model results with the directly applied spatially referenced insurance data suggests that models based on individual buildings produce better results than the model based on surface area, but only if they include an individual building's volume.Applying the five models to all of Switzerland produces results that are very similar with regard to the spatial distribution of exposed-building values. Therefore, for spatial prioritizations, simpler models are preferable. In absolute values, however, the five model results differ remarkably. The two simplest models underestimate the overall exposure, and even more so the extreme high values, upon which risk management strategies generally focus. In decision-making processes based on cost-efficiency, this underestimation would result in suboptimal resource allocation for protection measures. Consequently, we propose that estimating exposed-building values should be based on individual buildings rather than on areas of land use types. In addition, a building's individual volume has to be taken into account in order to provide a reliable basis for cost–benefit analyses. The consideration of other building features further improves the value estimation. However, within the context of flood risk management, the optimal value estimation model depends on the specific questions to be answered. The concepts of the presented building value models are generic. Thus, these models are transferable, with minimal adjustments according to the application's purpose and the data available. Within risk analyses, the paper's focus is on exposure. However, the findings also have direct implications for flood risk analyses as most risk analyses take the value of exposed assets into account in a linear way.</p

    Three-tangle for mixtures of generalized GHZ and generalized W states

    Get PDF
    We give a complete solution for the three-tangle of mixed three-qubit states composed of a generalized GHZ state, a|000>+b|111>, and a generalized W state, c|001>+d|010>+f|100>. Using the methods introduced by Lohmayer et al. we provide explicit expressions for the mixed-state three-tangle and the corresponding optimal decompositions for this more general case. Moreover, as a special case we obtain a general solution for a family of states consisting of a generalized GHZ state and an orthogonal product state

    Dynamics of concurrent and sequential Central European and Scandinavian heatwaves

    Get PDF
    In both 2003 and 2018 a heatwave in Scandinavia in July was followed by a heatwave in Central Europe in August. Whereas the transition occurred abruptly in 2003, it was gradual in 2018 with a 12-day period of concurrent heatwaves in both regions. This study contrasts these two events in the context of a heatwave climatology to elucidate the dynamics of both concurrent and sequential heatwaves. Central European and, in particular, concurrent heatwaves are climatologically associated with weak pressure gradient (WPG) events over Central Europe, which indicate the absence of synoptic activity over this region. One synoptic pattern associated with such events is Scandinavian blocking. This pattern is at the same time conducive to heatwaves in Scandinavia, thereby providing a mechanism by which Scandinavian and Central European heatwaves can co-occur. Further, the association of WPG events with Scandinavian blocking constitutes a mechanism that allows heatwaves to grow beyond the perimeter of the synoptic system from which they emanated. A trajectory analysis of the source regions of the low-level air incorporated in the heatwaves indicates rapidly changing air mass sources throughout the heatwaves in both regions, but no recycling of heat from one heatwave to the other. This finding is line with a composite analysis indicating that transitions between Scandinavian and Central European heatwaves are merely a random coincidence of heatwave onset and decay

    Diffusion of gold nanoclusters on graphite

    Full text link
    We present a detailed molecular-dynamics study of the diffusion and coalescence of large (249-atom) gold clusters on graphite surfaces. The diffusivity of monoclusters is found to be comparable to that for single adatoms. Likewise, and even more important, cluster dimers are also found to diffuse at a rate which is comparable to that for adatoms and monoclusters. As a consequence, large islands formed by cluster aggregation are also expected to be mobile. Using kinetic Monte Carlo simulations, and assuming a proper scaling law for the dependence on size of the diffusivity of large clusters, we find that islands consisting of as many as 100 monoclusters should exhibit significant mobility. This result has profound implications for the morphology of cluster-assembled materials

    Density-functional-based predictions of Raman and IR spectra for small Si clusters

    Get PDF
    We have used a density-functional-based approach to study the response of silicon clusters to applied electric fields. For the dynamical response, we have calculated the Raman activities and infrared (IR) intensities for all of the vibrational modes of several clusters (SiN with N=3-8, 10, 13, 20, and 21) using the local density approximation (LDA). For the smaller clusters (N=3-8) our results are in good agreement with previous quantum-chemical calculations and experimental measurements, establishing that LDA-based IR and Raman data can be used in conjunction with measured spectra to determine the structure of clusters observed in experiment. To illustrate the potential of the method for larger clusters, we present calculated IR and Raman data for two low-energy isomers of Si10 and for the lowest-energy structure of Si13 found to date. For the static response, we compare our calculated polarizabilities for N=10, 13, 20, and 21 to recent experimental measurements. The calculated results are in rough agreement with experiment, but show less variation with cluster size than the measurements. Taken together, our results show that LDA calculations can offer a powerful means for establishing the structures of experimentally fabricated clusters and nanoscale systems

    Thermal expansion in small metal clusters and its impact on the electric polarizability

    Get PDF
    The thermal expansion coefficients of NaN\mathrm{Na}_{N} clusters with 8N408 \le N \le 40 and Al7\mathrm{Al}_{7}, Al13\mathrm{Al}_{13}^- and Al14\mathrm{Al}_{14}^- are obtained from {\it ab initio} Born-Oppenheimer LDA molecular dynamics. Thermal expansion of small metal clusters is considerably larger than that in the bulk and size-dependent. We demonstrate that the average static electric dipole polarizability of Na clusters depends linearly on the mean interatomic distance and only to a minor extent on the detailed ionic configuration when the overall shape of the electron density is enforced by electronic shell effects. The polarizability is thus a sensitive indicator for thermal expansion. We show that taking this effect into account brings theoretical and experimental polarizabilities into quantitative agreement.Comment: 4 pages, 2 figures, one table. Accepted for publication in Physical Review Letters. References 10 and 23 update

    Ionic structure and photoabsorption in medium sized sodium clusters

    Get PDF
    We present ground-state configurations and photoabsorption spectra of Na-7+, Na-27+ and Na-41+. Both the ionic structure and the photoabsorption spectra of medium-size sodium clusters beyond Na-20 have been calculated self-consistently with a nonspherical treatment of the valence electrons in density functional theory. We use a local pseudopotential that has been adjusted to experimental bulk properties and the atomic 3s level of sodium. Our studies have shown that both the ionic structure of the ground state and the positions of the plasmon resonances depend sensitively on the pseudopotential used in the calculation, which stresses the importance of its consistent use in both steps.Comment: 4 pages, 3 figures. Accepted for publication in PRB, tentatively July 15th, 1998 some typos corrected, brought to nicer forma

    Charge-Induced Fragmentation of Sodium Clusters

    Get PDF
    The fission of highly charged sodium clusters with fissilities X>1 is studied by {\em ab initio} molecular dynamics. Na_{24}^{4+} is found to undergo predominantly sequential Na_{3}^{+} emission on a time scale of 1 ps, while Na_{24}^{Q+} (5 \leq Q \leq 8) undergoes multifragmentation on a time scale \geq 0.1 ps, with Na^{+} increasingly the dominant fragment as Q increases. All singly-charged fragments Na_{n}^{+} up to size n=6 are observed. The observed fragment spectrum is, within statistical error, independent of the temperature T of the parent cluster for T \leq 1500 K. These findings are consistent with and explain recent trends observed experimentally.Comment: To appear in Physical Review Letter

    Surface reconstruction induced geometries of Si clusters

    Full text link
    We discuss a generalization of the surface reconstruction arguments for the structure of intermediate size Si clusters, which leads to model geometries for the sizes 33, 39 (two isomers), 45 (two isomers), 49 (two isomers), 57 and 61 (two isomers). The common feature in all these models is a structure that closely resembles the most stable reconstruction of Si surfaces, surrounding a core of bulk-like tetrahedrally bonded atoms. We investigate the energetics and the electronic structure of these models through first-principles density functional theory calculations. These models may be useful in understanding experimental results on the reactivity of Si clusters and their shape as inferred from mobility measurements.Comment: 9 figures (available from the author upon request) Submitted to Phys. Rev.

    Towards an effective potential for the monomer, dimer, hexamer, solid and liquid forms of hydrogen fluoride

    Full text link
    We present an attempt to build up a new two-body effective potential for hydrogen fluoride, fitted to theoretical and experimental data relevant not only to the gas and liquid phases, but also to the crystal. The model is simple enough to be used in Molecular Dynamics and Monte Carlo simulations. The potential consists of: a) an intra-molecular contribution, allowing for variations of the molecular length, plus b) an inter-molecular part, with three charged sites on each monomer and a Buckingham "exp-6" interaction between fluorines. The model is able to reproduce a significant number of observables on the monomer, dimer, hexamer, solid and liquid forms of HF. The shortcomings of the model are pointed out and possible improvements are finally discussed.Comment: LaTeX, 24 pages, 2 figures. For related papers see also http://www.chim.unifi.it:8080/~valle
    corecore