5,227 research outputs found

    Intrinsic leakage and adsorption currents associated with the electrocaloric effect in multilayer capacitors

    Get PDF
    During the last few years, the increasing demand of energy for refrigeration applications has relived the interest of the scientific community in the study of alternative methods to the traditional gas-based refrigeration. Within this framework, the use of solid state refrigeration based on the electrocaloric effect reveals itself as one of the most promising technologies. In this work, we analyze how the temperature change associated with the electrocaloric effect shows a correlation with the electrical properties of a commercial multilayer capacitor. In that sense we established a clear relation between the adsorption currents and the temperature change produced by the electrocaloric effect. Additionally, intrinsic leakage currents are responsible for the sample heating due to the Joule effect. These well distinguished contributions can be useful during the design of solid state refrigeration devices based on the electrocaloric effect.Comment: Acepted to be published in Applied Physics Letter

    AuNx stabilization with interstitial nitrogen atoms: A Density Functional Theory Study

    Get PDF
    Researchers have been studying 4d and 5d Series Transition Metal Nitrides lately as a result of the experimental production of AuN, PtN, CuN. In this paper, we used the Density Functional Theory (DFT) implementing a pseudopotential plane-wave method to study the incorporation of nitrogen atoms in the face-centered cube (fcc) lattice of gold (Au). First, we took the fcc structure of gold, and gradually located the nitrogen atoms in tetrahedral (TH) and octahedral (OH) interstitial sites. AuN stabilized in: 2OH (30%), 4OH and 4TH (50%), 4OH - 2TH (close to the wurtzite structure) and 6TH (60%). This leads us to think that AuN behaves like a Transition Metal Nitride since the nitrogen atoms look for tetrahedral sites. © Published under licence by IOP Publishing Ltd

    Simultaneous electric and magnetic field induced nonvolatile memory

    Full text link
    We investigate the electric field induced resistive switching effect and magnetic field induced fraction enlargement on a polycrystalline sample of a colossal magnetoresistive compound displaying intrinsic phase coexistence. Our data show that the electric effect (presumably related to the presence of inhomogeinities) is present in a broad temperature range(300 to 20 K), being observable even in a mostly homogeneous ferromagnetic state. In the temperature range in which low magnetic field determines the phase coexistence fraction, both effects, though related to different mechanisms, are found to determine multilevel nonvolatile memory capabilities simultaneously.Comment: Submited to AP

    Ï„\tau-Flavour Violation at the LHC

    Get PDF
    We study the conditions required for χ2→χ+τ±μ∓\chi_2 \to \chi + \tau^\pm \mu^\mp decays to yield observable tau flavour violation at the LHC, for cosmologically interesting values of the neutralino relic density. These condition can be achieved in the framework of a SU(5) model with a see-saw mechanism that allows a possible coexistence of a LHC signal a low prediction for radiative LFV decays.Comment: 7 pages, 5 figures, Prepared for the proceedings of the workshop: "LC09: e+e−e^+ e^- Physics at the TeV Scale and the Dark Matter Connection", 21-24 September 2009, Perugia, Ital

    Energy Flow Puzzle of Soliton Ratchets

    Full text link
    We study the mechanism of directed energy transport for soliton ratchets. The energy flow appears due to the progressive motion of a soliton (kink) which is an energy carrier. However, the energy current formed by internal system deformations (the total field momentum) is zero. We solve the underlying puzzle by showing that the energy flow is realized via an {\it inhomogeneous} energy exchange between the system and the external ac driving. Internal kink modes are unambiguously shown to be crucial for that transport process to take place. We also discuss effects of spatial discretization and combination of ac and dc external drivings.Comment: 4 pages, 3 figures, submitted to PR

    On the IR behaviour of the Landau-gauge ghost propagator

    Get PDF
    We examine analytically the ghost propagator Dyson-Schwinger Equation (DSE) in the deep IR regime and prove that a finite ghost dressing function at vanishing momentum is an alternative solution (solution II) to the usually assumed divergent one (solution I). We furthermore find that the Slavnov-Taylor identities discriminate between these two classes of solutions and strongly support the solution II. The latter turns out to be also preferred by lattice simulations within numerical uncertainties.Comment: 15 pages, Axodraw neede
    • …
    corecore