10 research outputs found

    Intracellular distribution of viral gene products regulates a complex mechanism of cauliflower mosaic virus acquisition by its aphid vector

    No full text
    Interactions between Cauliflower mosaic virus (CaMV) and its aphid vector are regulated by the viral protein P2, which binds to the aphid stylets, and protein P3, which bridges P2 and virions. By using baculovirus expression of P2 and P3, electron microscopy, surface plasmon resonance, affinity chromatography, and transmission assays, we demonstrate that P3 must be previously bound to virions in order that attachment to P2 will allow aphid transmission of CaMV. We also show that a P2:P3 complex exists in the absence of virions but is nonfunctional in transmission. Hence, unlike P2, P3 and virions cannot be sequentially acquired by the vector. Immunogold labeling revealed the predominance of spatially separated P2:P3 and P3:virion complexes in infected plant cells. This specific distribution indicates that the transmissible complex, P2:P3:virion, does not form primarily in infected plants but in aphids. A model, describing the regulating role of P3 in the formation of the transmissible CaMV complex in planta and during acquisition by aphids, is presented, and its consequences are discussed

    Evidence of a bactericidal permeability increasing protein in an invertebrate, the Crassostrea gigas Cg-BPI

    No full text
    A cDNA sequence with homologies to members of the LPS-binding protein and bactericidal/permeability-increasing protein (BPI) family was identified in the oyster Crassostrea gigas. The recombinant protein was found to bind LPS, to display bactericidal activity against Escherichia coli, and to increase the permeability of the bacterial cytoplasmic membrane. This indicated that it is a BPI rather than an LPS-binding protein. By in situ hybridization, the expression of the C. gigas BPI (Cg-bpi) was found to be induced in hemocytes after oyster bacterial challenge and to be constitutive in various epithelia of unchallenged oysters. Thus, Cg-bpi transcripts were detected in the epithelial cells of tissues/organs in contact with the external environment (mantle, gills, digestive tract, digestive gland diverticula, and gonad follicles). Therefore, Cg-BPI, whose expression profile and biological properties are reminiscent of mammalian BPIs, may provide a first line of defense against potential bacterial invasion. To our knowledge, this is the first characterization of a BPI in an invertebrate

    Rapid Methods for Quality Assurance of Foods: the Next Decade with Polymerase Chain Reaction (PCR)-Based Food Monitoring

    No full text
    corecore