140 research outputs found

    Influence of season, age and breed on prevalence of haemoprotozoan diseases in cattle of Tamil Nadu, India

    Get PDF
    Aim: To assess the prevalence of haemoprotozoan diseases in cross-bred and indigenous cattle in relation to season, age and breed in Western part of Tamil Nadu, India. Materials and Methods: A total of 2637 blood smears were screened for haemoprotozoan diseases and samples were received from the college hospital and veterinary dispensaries in Western part of Tamil Nadu, India. Blood smears were stained using Giemsa's technique and examined under oil immersion. Results: Microscopic examination of blood smears revealed an overall prevalence of 16.64 %; of which theileriosis was 13 %, followed by anaplasmosis 2.64 % and then babesiosis 1.0%. Among the haemoprotozoan diseases, the prevalence of theileriosis was significantly (p<0.05) high during summer (14.4%), followed by moderate in monsoon (13.8%) and less in fair (11.5%) seasons. However, there was no significant seasonal influence on the prevalence of babesiosis and anaplasmosis. The data on influence of breed revealed that there was a significantly (p<0.05) high prevalence of haemoprotozoan diseases in Holstein Friesian (HF) and Jersey cross breeds than indigenous breed and the occurrence of these haemoprotozoan diseases was found to be high among the age groups of 2-7 years in cross-bred animals and below 2 years in indigenous animals. Conclusion: The present study suggests that Western part of Tamil Nadu is highly endemic for theileriosis and occurrence of the disease was high during summer. Cross-bred animals aged 2-7 years are highly susceptible to these haemoprotozoan diseases than indigenous animals

    Improving statistical inference on pathogen densities estimated by quantitative molecular methods: malaria gametocytaemia as a case study

    Get PDF
    BACKGROUND: Quantitative molecular methods (QMMs) such as quantitative real-time polymerase chain reaction (q-PCR), reverse-transcriptase PCR (qRT-PCR) and quantitative nucleic acid sequence-based amplification (QT-NASBA) are increasingly used to estimate pathogen density in a variety of clinical and epidemiological contexts. These methods are often classified as semi-quantitative, yet estimates of reliability or sensitivity are seldom reported. Here, a statistical framework is developed for assessing the reliability (uncertainty) of pathogen densities estimated using QMMs and the associated diagnostic sensitivity. The method is illustrated with quantification of Plasmodium falciparum gametocytaemia by QT-NASBA. RESULTS: The reliability of pathogen (e.g. gametocyte) densities, and the accompanying diagnostic sensitivity, estimated by two contrasting statistical calibration techniques, are compared; a traditional method and a mixed model Bayesian approach. The latter accounts for statistical dependence of QMM assays run under identical laboratory protocols and permits structural modelling of experimental measurements, allowing precision to vary with pathogen density. Traditional calibration cannot account for inter-assay variability arising from imperfect QMMs and generates estimates of pathogen density that have poor reliability, are variable among assays and inaccurately reflect diagnostic sensitivity. The Bayesian mixed model approach assimilates information from replica QMM assays, improving reliability and inter-assay homogeneity, providing an accurate appraisal of quantitative and diagnostic performance. CONCLUSIONS: Bayesian mixed model statistical calibration supersedes traditional techniques in the context of QMM-derived estimates of pathogen density, offering the potential to improve substantially the depth and quality of clinical and epidemiological inference for a wide variety of pathogens

    Gene Disruption of Plasmodium falciparum p52 Results in Attenuation of Malaria Liver Stage Development in Cultured Primary Human Hepatocytes

    Get PDF
    Difficulties with inducing sterile and long lasting protective immunity against malaria with subunit vaccines has renewed interest in vaccinations with attenuated Plasmodium parasites. Immunizations with sporozoites that are attenuated by radiation (RAS) can induce strong protective immunity both in humans and rodent models of malaria. Recently, in rodent parasites it has been shown that through the deletion of a single gene, sporozoites can also become attenuated in liver stage development and, importantly, immunization with these sporozoites results in immune responses identical to RAS. The promise of vaccination using these genetically attenuated sporozoites (GAS) depends on translating the results in rodent malaria models to human malaria. In this study, we perform the first essential step in this transition by disrupting, p52, in P. falciparum an ortholog of the rodent parasite gene, p36p, which we had previously shown can confer long lasting protective immunity in mice. These P. falciparum P52 deficient sporozoites demonstrate gliding motility, cell traversal and an invasion rate into primary human hepatocytes in vitro that is comparable to wild type sporozoites. However, inside the host hepatocyte development is arrested very soon after invasion. This study reveals, for the first time, that disrupting the equivalent gene in both P. falciparum and rodent malaria Plasmodium species generates parasites that become similarly arrested during liver stage development and these results pave the way for further development of GAS for human use

    The factors that influence the reading habit among Malaysian: a systematic literature review

    Get PDF
    Reading is an action that a person does to obtain a wider knowledge through his or her experience and this process may lead that person into a very eye-opening self-discovery. In Malaysia, reading habits rate is still at a lower level, Malaysian on average read only two books per year. About 80% of Malaysian university students are reluctant readers. They can read but choose not to read. Therefore, the objective of this study is to identify the factors affecting the reading habit among Malaysia. To answer the research question of this study we performed a systematic literature review (SLR). We defined a mapping study process adapted from existing guidelines to categorize and to structure the research evidence that has been published in the area of reading habits among Malaysian and world-wide. Twenty-Four papers were used in our synthesis of evidence, and five factors were identified. The results of this SLR showed the five factors that can affect the reading habits among Malaysian: (1) Internet (2) Environmental influence (3) Lack of motivation (4) Peer pressure (5) Entertainment. The findings of this SLR would be beneficial for understanding the needs of Malaysian towards the reading habit by looking at the factors, that might be a measurement of reading habit environment in other specific scopes

    The Transmembrane Isoform of Plasmodium falciparum MAEBL Is Essential for the Invasion of Anopheles Salivary Glands

    Get PDF
    Malaria transmission depends on infective stages in the mosquito salivary glands. Plasmodium sporozoites that mature in midgut oocysts must traverse the hemocoel and invade the mosquito salivary glands in a process thought to be mediated by parasite ligands. MAEBL, a homologue of the transmembrane EBP ligands essential in merozoite invasion, is expressed abundantly in midgut sporozoites. Alternative splicing generates different MAEBL isoforms and so it is unclear what form is functionally essential. To identify the MAEBL isoform required for P. falciparum (NF54) sporozoite invasion of salivary glands, we created knockout and allelic replacements each carrying CDS of a single MAEBL isoform. Only the transmembrane form of MAEBL is essential and is the first P. falciparum ligand validated as essential for invasion of Anopheles salivary glands. MAEBL is the first P. falciparum ligand experimentally determined to be essential for this important step in the life cycle where the vector becomes infectious for transmitting sporozoites to people. With an increasing emphasis on advancing vector-based transgenic methods for suppression of malaria, it is important that this type of study, using modern molecular genetic tools, is done with the agent of the human disease. Understanding what P. falciparum sporozoite ligands are critical for mosquito transmission will help validate targets for vector-based transmission-blocking strategies

    Submicroscopic Gametocytes and the Transmission of Antifolate-Resistant Plasmodium falciparum in Western Kenya

    Get PDF
    BACKGROUND: Single nucleotide polymorphisms (SNPs) in the dhfr and dhps genes are associated with sulphadoxine-pyrimethamine (SP) treatment failure and gametocyte carriage. This may result in enhanced transmission of mutant malaria parasites, as previously shown for chloroquine resistant parasites. In the present study, we determine the association between parasite mutations, submicroscopic P. falciparum gametocytemia and malaria transmission to mosquitoes. METHODOLOGY/PRINCIPAL FINDINGS: Samples from children treated with SP alone or in combination with artesunate (AS) or amodiaquine were genotyped for SNPs in the dhfr and dhps genes. Gametocytemia was determined by microscopy and Pfs25 RNA-based quantitative nucleic acid sequence-based amplification (Pfs25 QT-NASBA). Transmission was determined by membrane-feeding assays. We observed no wild type infections, 66.5% (127/191) of the infections expressed mutations at all three dhfr codons prior to treatment. The presence of all three mutations was not related to higher Pfs25 QT-NASBA gametocyte prevalence or density during follow-up, compared to double mutant infections. The proportion of infected mosquitoes or oocyst burden was also not related to the number of mutations. Addition of AS to SP reduced gametocytemia and malaria transmission during follow-up. CONCLUSIONS/SIGNIFICANCE: In our study population where all infections had at least a double mutation in the dhfr gene, additional mutations were not related to increased submicroscopic gametocytemia or enhanced malaria transmission. The absence of wild-type infections is likely to have reduced our power to detect differences. Our data further support the use of ACT to reduce the transmission of drug-resistant malaria parasites

    Inhibitory Effect of TNF-α on Malaria Pre-Erythrocytic Stage Development: Influence of Host Hepatocyte/Parasite Combinations

    Get PDF
    BACKGROUND: The liver stages of malaria parasites are inhibited by cytokines such as interferon-gamma or Interleukin (IL)-6. Binding of these cytokines to their receptors at the surface of the infected hepatocytes leads to the production of nitric oxide (NO) and radical oxygen intermediates (ROI), which kill hepatic parasites. However, conflicting results were obtained with TNF-alpha possibly because of differences in the models used. We have reassessed the role of TNF-alpha in the different cellular systems used to study the Plasmodium pre-erythrocytic stages. METHODS AND FINDINGS: Human or mouse TNF-alpha were tested against human and rodent malaria parasites grown in vitro in human or rodent primary hepatocytes, or in hepatoma cell lines. Our data demonstrated that TNF-alpha treatment prevents the development of malaria pre-erythrocytic stages. This inhibitory effect however varies with the infecting parasite species and with the nature and origin of the cytokine and hepatocytes. Inhibition was only observed for all parasite species tested when hepatocytes were pre-incubated 24 or 48 hrs before infection and activity was directed only against early hepatic parasite. We further showed that TNF-alpha inhibition was mediated by a soluble factor present in the supernatant of TNF-alpha stimulated hepatocytes but it was not related to NO or ROI. Treatment TNF-alpha prevents the development of human and rodent malaria pre-erythrocytic stages through the activity of a mediator that remains to be identified. CONCLUSIONS: Treatment TNF-alpha prevents the development of human and rodent malaria pre-erythrocytic stages through the activity of a mediator that remains to be identified. However, the nature of the cytokine-host cell-parasite combination must be carefully considered for extrapolation to the human infection
    corecore