262 research outputs found
Simple modeling of self-oscillation in Nano-electro-mechanical systems
We present here a simple analytical model for self-oscillations in
nano-electro-mechanical systems. We show that a field emission self-oscillator
can be described by a lumped electrical circuit and that this approach is
generalizable to other electromechanical oscillator devices. The analytical
model is supported by dynamical simulations where the electrostatic parameters
are obtained by finite element computations.Comment: accepted in AP
In situ imaging of field emission from individual carbon nanotubes and their structural damage
©2002 American Institute of Physics. The electronic version of this article is the complete one and can be found online at: http://link.aip.org/link/?APPLAB/80/856/1DOI:10.1063/1.1446994Field emission of individual carbon nanotubes was observed by in situ
transmission electron microscopy. A fluctuation in emission current was due to a
variation in distance between the nanotube tip and the counter electrode owing
to a "head-shaking" effect of the nanotube during field emission. Strong
field-induced structural damage of a nanotube occurs in two ways: a
piece-by-piece and segment-by-segment pilling process of the graphitic layers,
and a concentrical layer-by-layer stripping process. The former is believed
owing to a strong electrostatic force, and the latter is likely due to heating
produced by emission current that flowed through the most outer graphitic
layers
Intrinsic thermal vibrations of suspended doubly clamped single-wall carbon nanotubes
We report the observation of thermally driven mechanical vibrations of
suspended doubly clamped carbon nanotubes, grown by chemical vapor deposition
(CVD). Several experimental procedures are used to suspend carbon nanotubes.
The vibration is observed as a blurring in images taken with a scanning
electron microscope. The measured vibration amplitudes are compared with a
model based on linear continuum mechanics.Comment: pdf including figures, see:
http://www.unibas.ch/phys-meso/Research/Papers/2003/NT-Thermal-Vibrations.pd
Mechanically induced current and quantum evaporation from Luttinger liquids
We investigate transport through a tunnelling junction between an
uncorrelated metallic lead and a Luttinger liquid when the latter is subjected
to a time dependent perturbation. The tunnelling current as well as the
electron energy distribution function are found to be strongly affected by the
perturbation due to generation of harmonics in the density oscillations. Using
a semiconducting lead instead of a metallic one results in electrons being
injected into the lead even without applied voltage. Some applications to
carbon nanotubes are discussed.Comment: 7 pages, 2 figures (eps files
Electromechanical instability in suspended carbon nanotubes
We have theoretically investigated electromechanical properties of freely
suspended carbon nanotubes when a current is injected into the tubes using a
scanning tunneling microscope. We show that a shuttle-like electromechanical
instability can occur if the bias voltage exceeds a dissipation-dependent
threshold value. An instability results in large amplitude vibrations of the
carbon nanotube bending mode, which modify the current-voltage characteristics
of the system
Performance of field-emitting resonating carbon nanotubes as radio-frequency demodulators
International audienceWe report on a systematic study of the use of resonating nanotubes in a field emission (FE) configuration to demodulate radio frequency signals. We particularly concentrate on how the demodulation depends on the variation of the field amplification factor during resonance. Analytical formulas describing the demodulation are derived as functions of the system parameters. Experiments using AM and FM demodulations in a transmission electron microscope are also presented with a determination of all the pertinent experimental parameters. Finally we discuss the use of CNTs undergoing FE as nanoantennae and the different geometries that could be used for optimization and implementation. © 2011 American Physical Society
Pumping current of a Luttinger liquid with finite length
We study transport properties in a Tomonaga-Luttinger liquid in the presence
of two time-dependent point like weak impurities, taking into account
finite-length effects. By employing analytical methods and performing a
perturbation theory, we compute the backscattering pumping current (I_bs) in
different regimes which can be established in relation to the oscillatory
frequency of the impurities and to the frequency related to the length and the
renormalized velocity (by the electron-electron interactions) of the charge
density modes. We investigate the role played by the spatial position of the
impurity potentials. We also show how the previous infinite length results for
I_bs are modified by the finite size of the system.Comment: 9 pages, 7 figure
Structural correlations in heterogeneous electron transfer at monolayer and multilayer graphene electrodes
As a new form of carbon, graphene is attracting intense interest as an electrode material with widespread applications. In the present study, the heterogeneous electron transfer (ET) activity of graphene is investigated using scanning electrochemical cell microscopy (SECCM), which allows electrochemical currents to be mapped at high spatial resolution across a surface for correlation with the corresponding structure and properties of the graphene surface. We establish that the rate of heterogeneous ET at graphene increases systematically with the number of graphene layers, and show that the stacking in multilayers also has a subtle influence on ET kinetics. © 2012 American Chemical Society
Universal Vectorial and Ultrasensitive Nanomechanical Force Field Sensor
Miniaturization of force probes into nanomechanical oscillators enables
ultrasensitive investigations of forces on dimensions smaller than their
characteristic length scale. Meanwhile it also unravels the force field
vectorial character and how its topology impacts the measurement. Here we
expose an ultrasensitive method to image 2D vectorial force fields by
optomechanically following the bidimensional Brownian motion of a singly
clamped nanowire. This novel approach relies on angular and spectral tomography
of its quasi frequency-degenerated transverse mechanical polarizations:
immersing the nanoresonator in a vectorial force field does not only shift its
eigenfrequencies but also rotate eigenmodes orientation as a nano-compass. This
universal method is employed to map a tunable electrostatic force field whose
spatial gradients can even take precedence over the intrinsic nanowire
properties. Enabling vectorial force fields imaging with demonstrated
sensitivities of attonewton variations over the nanoprobe Brownian trajectory
will have strong impact on scientific exploration at the nanoscale
Giant magnetoresistance of multiwall carbon nanotubes: modeling the tube/ferromagnetic-electrode burying contact
We report on the giant magnetoresistance (GMR) of multiwall carbon nanotubes
with ultra small diameters. In particular, we consider the effect of the
inter-wall interactions and the lead/nanotube coupling. Comparative studies
have been performed to show that in the case when all walls are well coupled to
the electrodes, the so-called inverse GMR can appear. The tendency towards a
negative GMR depends on the inter-wall interaction and on the nanotube le ngth.
If, however, the inner nanotubes are out of contact with one of the electrodes,
the GMR remains positive even for relatively strong inter-wall interactions
regardless of the outer nanotube length. These results shed additional light on
recently reported experimental data, where an inverse GMR was found in some
multiwall carbon nanotube samples.Comment: 5 pages, 5 figure
- …
