45 research outputs found
Therapeutic Effects of Liposome-Enveloped Ligusticum chuanxiong Essential Oil on Hypertrophic Scars in the Rabbit Ear Model
Hypertrophic scarring, a common proliferative disorder of dermal fibroblasts, results from an overproduction of fibroblasts and excessive deposition of collagen. Although treatment with surgical excision or steroid hormones can modify the symptoms, numerous treatment-related complications have been described. In view of this, we investigated the therapeutic effects of essential oil (EO) from rhizomes of Ligusticum chuanxiong Hort. (Umbelliferae) on formed hypertrophic scars in a rabbit ear model. EO was prepared as a liposomal formulation (liposome-enveloped essential oil, LEO) and a rabbit ear model with hypertrophic scars was established. LEO (2.5, 5, and 10%) was applied once daily to the scars for 28 days. On postoperative day 56, the scar tissue was excised for masson's trichrome staining, detection of fibroblast apoptosis, assays of the levels of collagens I and III, and analysis of the mRNA expression of matrix metalloproteinase-1 (MMP-1), caspase-3 and -9, and transforming growth factor beta 1 (TGF-β1). In addition, the scar elevation index (SEI) was also determined. As a result, LEO treatment significantly alleviated formed hypertrophic scars on rabbit ears. The levels of TGF-β1, MMP-1, collagen I, and collagen III were evidently decreased, and caspase -3 and -9 levels and apoptosis cells were markedly increased in the scar tissue. SEI was also significantly reduced. Histological findings exhibited significant amelioration of the collagen tissue. These results suggest that LEO possesses the favorable therapeutic effects on formed hypertrophic scars in the rabbit ear model and may be an effective cure for human hypertrophic scars
Largest ancient fortress of South-West Asia and the western world?:Recent fieldwork at Sasanian Qaleh Iraj at Pishva, Iran
The article presents recent works at Qale Iraj, near Varamin, Iran. My short contribution is on the Middle Persian ostraka found at the site
Preliminary efficacy of essential oils for improving sleep quality and fatigue in an individual with prostate cancer: a case report
Objective: Androgen deprivation therapy (ADT) is the main treatment for metastatic hormone-sensitive prostate cancer (mHSPC). Fatigue and loss of sleep quality are the side effects of ADT, which reduces the quality of life in these patients. Aromatherapy is one of the complementary and alternative medicines (CAM) that are effective on psychological indices.
Patients and Methods: In an A1B1A2B2 study, from February to September 2019, a 64-year-old man treated with methadone, with diagnosis of localize prostate carcinoma after radical prostatectomy and receiving ADT was selected through Respondent-Driven Sampling (RDS). The patient was treated with underwent aromatherapy massage in two three-week stages (B1 and B2) and received Routine Therapy in the other two stages (A1 and A2). The effectiveness of treatment on two indices of sleep quality and fatigue severity was considered as primary outcomes and the association of two indices was considered as secondary outcomes. Data were analyzed by means of a generalized estimation equation (GEE) and repeated measures correlation (rmcorr) through IBM SPSS Statistics Version 20.
Results: Primary outcomes showed that aromatherapy massage was associated with improvement in sleep quality and decreased fatigue (p<0.01). Secondary outcomes also showed that there was a significant negative relationship between sleep quality and fatigue severity (p<0.05).
Conclusions: The results of this study, while confirming the effectiveness of aromatherapy on psychological aspects in a patient with cancer, can be promising in designing new therapeutic in CAM and be used by oncology setting
The role of childhood maltreatment in cortisol in the hypothalamic-pituitary-adrenal (HPA) axis in methamphetamine-dependent individuals with and without depression comorbidity and suicide attempts
Background: The hypothalamic-pituitary-adrenal (HPA) axis dysregulation which was found to have an important role in the pathophysiology of depression, suicide, and substance dependence, may be influenced by childhood maltreatment (CM). The present study aimed to investigate the relationship between CM and cortisol changes in methamphetamine-dependent individuals. Methods: In a cross-sectional study, methamphetamine-dependent individuals (n. = = 195) with or without both comorbid major depressive disorder (MDD) and a history of suicide attempts were selected and completed the Childhood Trauma Questionnaire-Short Form (CTQ-SF), the Beck Scale for Suicide Ideation (BSSI), and the Beck Depression Inventory-II (BDI-II). To assess cortisol levels, saliva samples were collected at six time intervals for two consecutive days. Results: A history of CM significantly predicted wake-up cortisol level, cortisol awakening response (CAR), and diurnal cortisol slope. Methamphetamine-dependent individuals with both MDD and lifetime suicide attempts had higher CM and higher cortisol levels with a blunted diurnal cortisol slope than individuals who were merely methamphetamine-dependent. Individuals with high CM showed higher cortisol levels with a blunted diurnal slope than those with low or without CM. Limitations: Cross-sectional data and use of self-report scales, especially retrospective measurements (e.g., the CTQ-SF), were important limitations of this study. Conclusion: Findings suggest that methamphetamine-dependent individuals with adverse psychological factors such as CM, MDD, and suicide attempts may show dysregulation in biological factors including cortisol level. In addition, CM and its effects on cortisol in the HPA axis may emerge as important factors regarding psychopathological use of methamphetamine
Robust Training for AC-OPF (Student Abstract)
Electricity network operators use computationally demanding mathematical models to optimize AC power flow (AC-OPF). Recent work applies neural networks (NN) rather than optimization methods to estimate locally optimal solutions. However, NN training data is costly and current models cannot guarantee optimal or feasible solutions. This study proposes a robust NN training approach, which starts with a small amount of seed training data and uses iterative feedback to generate additional data in regions where the model makes poor predictions. The method is applied to non-linear univariate and multivariate test functions, and an IEEE 6-bus AC-OPF system. Results suggest robust training can achieve NN prediction performance similar to, or better than, regular NN training, while using significantly less data
Random forest classification of depression status based on subcortical brain morphometry following electroconvulsive therapy
Disorders of the central nervous system are often accompanied by brain abnormalities detectable with MRI. Advances in biomedical imaging and pattern detection algorithms have led to classification methods that may help diagnose and track the progression of a brain disorder and/or predict successful response to treatment. These classification systems often use high-dimensional signals or images, and must handle the computational challenges of high dimensionality as well as complex data types such as shape descriptors. Here, we used shape information from subcortical structures to test a recently developed feature-selection method based on regularized random forests to 1) classify depressed subjects versus controls, and 2) patients before and after treatment with electroconvulsive therapy. We subsequently compared the classification performance of high-dimensional shape features with traditional volumetric measures. Shape-based models outperformed simple volumetric predictors in several cases, highlighting their utility as potential automated alternatives for establishing diagnosis and predicting treatment response
Structural Plasticity of the Hippocampus and Amygdala Induced by Electroconvulsive Therapy in Major Depression
BackgroundElectroconvulsive therapy (ECT) elicits a rapid and robust clinical response in patients with refractory depression. Neuroimaging measurements of structural plasticity relating to and predictive of ECT response may point to the mechanisms underlying rapid antidepressant effects and establish biomarkers to inform other treatments. Here, we determine the effects of diagnosis and of ECT on global and local variations of hippocampal and amygdala structures in major depression and predictors of ECT-related clinical response.MethodsLongitudinal changes in hippocampal and amygdala structures were examined in patients with major depression (N = 43, scanned three times: prior to ECT, after the second ECT session, and within 1 week of completing the ECT treatment series), referred for ECT as part of their standard clinical care. Cross-sectional comparisons with demographically similar controls (N = 32, scanned twice) established effects of diagnosis.ResultsPatients showed smaller hippocampal volumes than controls at baseline (p < .04). Both the hippocampal and the amygdala volumes increased with ECT (p < .001) and in relation to symptom improvement (p < .01). Hippocampal volume at baseline predicted subsequent clinical response (p < .05). Shape analysis revealed pronounced morphometric changes in the anterior hippocampus and basolateral and centromedial amygdala. All structural measurements remained stable across time in controls.ConclusionsECT-induced neuroplasticity in the hippocampus and amygdala relates to improved clinical response and is pronounced in regions with prominent connections to ventromedial prefrontal cortex and other limbic structures. Smaller hippocampal volumes at baseline predict a more robust clinical response. Neurotrophic processes including neurogenesis shown in preclinical studies may underlie these structural changes
TERMINAL NEUROENDOCRINE DIFFERENTIATION OF HUMAN PROSTATE CARCINOMA-CELLS IN RESPONSE TO INCREASED INTRACELLULAR CYCLIC-AMP
Recent clinicopathologic studies have shown that many prostatic adenocarcinomas express focal neuroendocrine differentiation and that neuroendocrine differentiation is most apparent in advanced anaplastic tumors. While studying growth-regulatory signal transduction events in human prostate carcinoma cell lines, we found that in two of four cell lines, the androgen-sensitive line LNCaP and the highly metastatic androgen-independent line PC-3-M, elevation of cAMP through addition of cAMP analogues or phosphodiesterase inhibitors induced a markedly neuronal morphology. Also in LNCaP cells ultrastructural analysis showed that cAMP induced the appearance of neurosecretory cell-like dense-core granules. Phenotypic analysis of untreated LNCaP and PC 3-M cells showed that both cell lines express markers of the neural crest including S-100, chromogranin A, pp60(c-src), and neuron-specific enolase as well as the epithelial marker KS1/4 and stage-specific embryonic antigen 4. In PC-3-M tells, cAMP markedly elevated neuron-specific enolase protein and caused an increase in the specific activity of the neuroendocrine marker pp60(c-src), and in both cell lines expression of KS1/4 and stage specific embryonic antigen 4 was down-regulated. In addition to effects on lineage markers, cAMP treatment induced G(1) synchronization, growth arrest, and loss of clonogenicity, indicating terminal differentiation. Our data provide direct evidence of plasticity in the lineage commitment of adenocarcinoma of the prostate. We have shown that cell-permeant cAMP analogues can induce terminal differentiation, suggesting that hydrolysis-resistant cyclic nucleotides may present an additional approach to the treatment of advanced prostate cancer.Y