685 research outputs found

    Co-Clustering Network-Constrained Trajectory Data

    Full text link
    Recently, clustering moving object trajectories kept gaining interest from both the data mining and machine learning communities. This problem, however, was studied mainly and extensively in the setting where moving objects can move freely on the euclidean space. In this paper, we study the problem of clustering trajectories of vehicles whose movement is restricted by the underlying road network. We model relations between these trajectories and road segments as a bipartite graph and we try to cluster its vertices. We demonstrate our approaches on synthetic data and show how it could be useful in inferring knowledge about the flow dynamics and the behavior of the drivers using the road network

    Scaling near Quantum Chaos Border in Interacting Fermi Systems

    Full text link
    The emergence of quantum chaos for interacting Fermi systems is investigated by numerical calculation of the level spacing distribution P(s)P(s) as function of interaction strength UU and the excitation energy ϵ\epsilon above the Fermi level. As UU increases, P(s)P(s) undergoes a transition from Poissonian (nonchaotic) to Wigner-Dyson (chaotic) statistics and the transition is described by a single scaling parameter given by Z=(Uϵαu0)ϵ1/2νZ = (U \epsilon^{\alpha}-u_0) \epsilon^{1/2\nu}, where u0u_0 is a constant. While the exponent α\alpha, which determines the global change of the chaos border, is indecisive within a broad range of 0.92.00.9 \sim 2.0, finite value of ν\nu, which comes from the increase of the Fock space size with ϵ\epsilon, suggests that the transition becomes sharp as ϵ\epsilon increases.Comment: 4 pages, 4 figures, to appear in Phys. Rev. E (Rapid Communication

    Effect of Randomness on Quantum Data Buses of Heisenberg Spin Chains

    Full text link
    A strongly coupled spin chain can mediate long-distance effective couplings or entanglement between remote qubits, and can be used as a quantum data bus. We study how the fidelity of a spin-1/2 Heisenberg chain as a spin bus is affected by static random exchange couplings and magnetic fields. We find that, while non-uniform exchange couplings preserve the isotropy of the qubit effective couplings, they cause the energy levels, the eigenstates, and the magnitude of the couplings to vary locally. On the other hand, random local magnetic fields lead to an avoided level crossing for the bus ground state manifold, and cause the effective qubit couplings to be anisotropic. Interestingly, the total magnetic moment of the ground state of an odd-size bus may not be parallel to the average magnetic field. Its alignment depends on both the direction of the average field and the field distribution, in contrast with the ground state of a single spin which always aligns with the applied magnetic field to minimize the Zeeman energy. Lastly, we calculate sensitivities of the spin bus to such local variations, which are potentially useful for evaluating decoherence when dynamical fluctuations in the exchange coupling or magnetic field are considered

    General Localization Lengths for Two Interacting Particles in a Disordered Chain

    Full text link
    The propagation of an interacting particle pair in a disordered chain is characterized by a set of localization lengths which we define. The localization lengths are computed by a new decimation algorithm and provide a more comprehensive picture of the two-particle propagation. We find that the interaction delocalizes predominantly the center-of-mass motion of the pair and use our approach to propose a consistent interpretation of the discrepancies between previous numerical results.Comment: 4 pages, 2 epsi figure

    Identification and Characterization of Transcription Factors Regulating Arabidopsis \u3ci\u3eHAK5\u3c/i\u3e

    Get PDF
    Potassium (K) is an essential macronutrient for plant growth and reproduction. HAK5, an Arabidopsis high-affinity K transporter gene, plays an important role in K uptake. Its expression is up-regulated in response to K deprivation and is rapidly down-regulated when sufficient K levels have been re-established. To identify transcription factors regulating HAK5, an Arabidopsis TF FOX (Transcription Factor Full-length cDNA Over-eXpressor) library containing approximately 800 transcription factors was used to transform lines previously transformed with a luciferase reporter gene whose expression was driven by the HAK5 promoter. When grown under sufficient K levels, 87 lines with high luciferase activity were identified, and endogenous HAK5 expression was confirmed in 27 lines. Four lines overexpressing DDF2 (Dwarf and Delayed Flowering 2), JLO (Jagged Lateral Organs), TFII_A (Transcription initiation Factor II_A gamma chain) and bHLH121 (basic Helix–Loop–Helix 121) were chosen for further characterization by luciferase activity, endogenous HAK5 level and root growth in K-deficient conditions. Further analysis showed that the expression of these transcription factors increased in response to low K and salt stress. In comparison with controls, root growth under low K conditions was better in each of these four TF FOX lines. Activation of HAK5 expression by these four transcription factors required at least 310 bp of upstream sequence of the HAK5 promoter. These results indicate that at least these four transcription factors can bind to the HAK5 promoter in response to K limitation and activate HAK5 expression, thus allowing plants to adapt to nutrient stress. Includes supplementary figure and table

    Anomalous f_1 exchange in vector meson photoproduction asymmetries

    Get PDF
    We perform an analysis of the elastic production of vector mesons with polarized photon beams at high energy in order to investigate the validity of a recently proposed dynamical mechanism based on the dominance of the f_1 trajectory at large momentum transfer. The density matrix characterizing the angular distributions of the vector meson decays is calculated within an exchange model which includes the Pomeron and the f_1. The asymmetries of these decays turn out to be very useful to disentangle the role of these exchanges since their effect depends crucially on their quantum numbers which are different. The observables analyzed are accessible with present experimental facilities.Comment: 10 pages, REVTeX, 4 figures, some figures are corrected, conclusions unchange

    Antibodies to infliximab and adalimumab in patients with rheumatoid arthritis in clinical remission:a cross-sectional study

    Get PDF
    Objective. To investigate if antibodies towards biological TNF-α inhibitors (anti-TNFi Abs) are present in patients with rheumatoid arthritis (RA) in clinical remission and to relate any anti-TNFi Abs to circulating level of TNF-α inhibitor (TNFi). Methods. Patients with RA, treated with infliximab or adalimumab, and in clinical remission (DAS28(CRP) < 2.6) were included from 6 out-patient clinics. In blood samples, presence of anti-TNFi Abs was determined by radioimmunoassay, and concentration of bioactive TNFi was measured by a cell-based reporter gene assay. Results. Anti-TNFi Abs were present in 8/44 patients (18%) treated with infliximab and 1/49 patients (2%) treated with adalimumab (p=0.012). In the former group, anti-TNFi Abs corresponded with low levels of TNFi (p=0.048). Anti-TNFi Ab-positive patients had shorter disease duration at initiation of TNFi therapy (p=0.023) but were similar for the rest of the compared parameters. Conclusions. In RA patients in clinical remission, anti-TNFi Abs occur frequently in patients treated with infliximab, while they occur rarely in patients treated with adalimumab. Presence of anti-infliximab Abs is accompanied by low or undetectable levels of infliximab. These data suggest that continued infliximab treatment may be redundant in a proportion of RA patients treated with infliximab and in clinical remission
    corecore