5,573 research outputs found

    Environmental exposures and mutational patterns of cancer genomes

    Get PDF
    The etiology of most human cancers is unknown. Genetic inheritance and environmental factors are thought to have major roles, and for some types of cancer, exposure to carcinogens is a proven mechanism leading to tumorigenesis. Sequencing of entire cancer genomes has not only begun to provide clues regarding functionally relevant mutations, but has also paved the way towards understanding the initial exposures leading to DNA damage, repair and eventually to mutation of specific sequences within a cancer genome. Two recent studies of melanoma and small cell lung cancer exemplify what type of information can be gained from cancer genome sequencing

    Highlights from KEROGREEN’s plasma-route towards e-Kerosene

    Get PDF

    Ideal Bose gas in fractal dimensions and superfluid 4^4He in porous media

    Full text link
    Physical properties of ideal Bose gas with the fractal dimensionality between D=2 and D=3 are theoretically investigated. Calculation shows that the characteristic features of the specific heat and the superfluid density of ideal Bose gas in fractal dimensions are strikingly similar to those of superfluid Helium-4 in porous media. This result indicates that the geometrical factor is dominant over mutual interactions in determining physical properties of Helium-4 in porous media.Comment: 13 pages, 6 figure

    Muon accelerators -- Muon lifetime measurements as window to Planck scale physics

    Full text link
    A prominent effective description of particles interacting with the quantum properties of gravity is through modifications of the general relativistic dispersion relation. Such modified dispersion relations lead to modifications in the relativistic time dilation. A perfect probe for this effect, which goes with the particle energy cubed E3E^3 over the quantum gravity scale EQGE_{\text{QG}} and the square of the particle mass M2M^2 would be a very light unstable particle for which one can detect the lifetime in the laboratory as a function of its energy to very high precision. In this article we conjecture that a muon collider or accelerator would be a perfect tool to investigate the existence of an anomalous time dilation, and with it the fundamental structure of spacetime at the Planck scale.Comment: 12 pages, 2 figures. Matches version published in Classical and Quantum Gravity Focus Issue: "Focus on Quantum Gravity Phenomenology in the Multi-Messenger Era: Challenges and Perspectives

    Numerical study of multilayer adsorption on fractal surfaces

    Full text link
    We report a numerical study of van der Waals adsoprtion and capillary condensation effects on self-similar fractal surfaces. An assembly of uncoupled spherical pores with a power-law distributin of radii is used to model fractal surfaces with adjustable dimensions. We find that the commonly used fractal Frankel-Halsey-Hill equation systematically fails to give the correct dimension due to crossover effects, consistent with the findings of recent experiments. The effects of pore coupling and curvature dependent surface tension were also studied.Comment: 11 pages, 3 figure

    Entanglement renormalization, scale invariance, and quantum criticality

    Full text link
    The use of entanglement renormalization in the presence of scale invariance is investigated. We explain how to compute an accurate approximation of the critical ground state of a lattice model, and how to evaluate local observables, correlators and critical exponents. Our results unveil a precise connection between the multi-scale entanglement renormalization ansatz (MERA) and conformal field theory (CFT). Given a critical Hamiltonian on the lattice, this connection can be exploited to extract most of the conformal data of the CFT that describes the model in the continuum limit.Comment: 4 pages, 3 figures, RevTeX 4. Revised for greater clarit

    Simulation of anyons with tensor network algorithms

    Get PDF
    Interacting systems of anyons pose a unique challenge to condensed matter simulations due to their non-trivial exchange statistics. These systems are of great interest as they have the potential for robust universal quantum computation, but numerical tools for studying them are as yet limited. We show how existing tensor network algorithms may be adapted for use with systems of anyons, and demonstrate this process for the 1-D Multi-scale Entanglement Renormalisation Ansatz (MERA). We apply the MERA to infinite chains of interacting Fibonacci anyons, computing their scaling dimensions and local scaling operators. The scaling dimensions obtained are seen to be in agreement with conformal field theory. The techniques developed are applicable to any tensor network algorithm, and the ability to adapt these ansaetze for use on anyonic systems opens the door for numerical simulation of large systems of free and interacting anyons in one and two dimensions.Comment: Fixed typos, matches published version. 16 pages, 21 figures, 4 tables, RevTeX 4-1. For a related work, see arXiv:1006.247

    Hydrogen Production from the LOHC Perhydro-Dibenzyl-Toluene and Purification using a 5 µm PdAg-Membrane in a coupled Microstructured System

    Get PDF
    Hydrogen bound in organic liquid hydrogen carriers (LOHC) such as dibenzyl-toluene enables simple and safe handling as well as long-term storage. This idea is particularly interesting in the context of the energy transition, where hydrogen is considered a key energy carrier. The LOHC technology serves as a storage between volatile energy and locally and timely independent consumption. Depending on the type of application, decisive specifications are placed on the hydrogen purity. In the product gas from dehydrogenation, however, concentrations of 100 to a few 1000 ppm can be found from low boiling substances, which partly originate from the production of the LOHC material, but also from the decomposition and evaporation of the LOHC molecules in the course of the enormous volume expansion due to hydrogen release. For the removal of undesired traces in the LOHC material, a pre-treatment and storage under protective gas is necessary. For purification, the use of Pd-based membranes might be useful, which makes these steps less important or even redundant. Heat supply and phase contacting of the liquid LOHC and catalyst is also crucial for the process. Within the contribution, the first results from a coupled microstructured system—consisting of a radial flow reactor unit and membrane separation unit—are shown. In a first step, the 5 m thick PdAg-membrane was characterized and a high Sieverts exponent of 0.9 was determined, indicating adsorption/desorption driven permeation. It can be demonstrated that hydrogen is first released with high catalyst-related productivity in the reactor system and afterwards separated and purified. Within the framework of limited analytics, we found that by using a Pd-based membrane, a quality of 5.0 (99.999% purity) or higher can be achieved. Furthermore, it was found that after only 8 hours, the membrane can lose up to 30% of its performance when exposed to the slightly contaminated product gas from the dehydrogenation process. However, the separation efficiency can almost completely be restored by the treatment with pure hydrogen

    Boundary quantum critical phenomena with entanglement renormalization

    Get PDF
    We extend the formalism of entanglement renormalization to the study of boundary critical phenomena. The multi-scale entanglement renormalization ansatz (MERA), in its scale invariant version, offers a very compact approximation to quantum critical ground states. Here we show that, by adding a boundary to the scale invariant MERA, an accurate approximation to the critical ground state of an infinite chain with a boundary is obtained, from which one can extract boundary scaling operators and their scaling dimensions. Our construction, valid for arbitrary critical systems, produces an effective chain with explicit separation of energy scales that relates to Wilson's RG formulation of the Kondo problem. We test the approach by studying the quantum critical Ising model with free and fixed boundary conditions.Comment: 8 pages, 12 figures, for a related work see arXiv:0912.289
    • …
    corecore