6,977 research outputs found
Traffic noise exposure, education and annoyance: longitudinal experience from crosssectional surveys over time (1989-2004)
C
Entanglement renormalization, scale invariance, and quantum criticality
The use of entanglement renormalization in the presence of scale invariance
is investigated. We explain how to compute an accurate approximation of the
critical ground state of a lattice model, and how to evaluate local
observables, correlators and critical exponents. Our results unveil a precise
connection between the multi-scale entanglement renormalization ansatz (MERA)
and conformal field theory (CFT). Given a critical Hamiltonian on the lattice,
this connection can be exploited to extract most of the conformal data of the
CFT that describes the model in the continuum limit.Comment: 4 pages, 3 figures, RevTeX 4. Revised for greater clarit
Coherent control for the spherical symmetric box potential in short and intensive XUV laser fields
Coherent control calculations are presented for a spherically symmetric box
potential for non-resonant two photon transition probabilities. With the help
of a genetic algorithm (GA) the population of the excited states are maximized
and minimized. The external driving field is a superposition of three intensive
extreme ultraviolet (XUV) linearly polarized laser pulses with different
frequencies in the femtosecond duration range. We solved the quantum mechanical
problem within the dipole approximation. Our investigation clearly shows that
the dynamics of the electron current has a strong correlation with the
optimized and neutralizing pulse shape.Comment: 11 Pages 3 Figure
Ideal Bose gas in fractal dimensions and superfluid He in porous media
Physical properties of ideal Bose gas with the fractal dimensionality between
D=2 and D=3 are theoretically investigated. Calculation shows that the
characteristic features of the specific heat and the superfluid density of
ideal Bose gas in fractal dimensions are strikingly similar to those of
superfluid Helium-4 in porous media. This result indicates that the geometrical
factor is dominant over mutual interactions in determining physical properties
of Helium-4 in porous media.Comment: 13 pages, 6 figure
The Potential for Electromagnetic Metal Forming for Plane (Car Body) Components
Classical quasi-static technologies of sheet metal forming are not the only domain of the Fraunhofer Institute for Machine Tools and Forming Technology (IWU). It also delves into techniques for high-energy rate forming, such as gas generator technology, and it will be dedicating greater efforts to electromagnetic metal forming. Electromagnetic metal forming processes major potential for innovation and development in manufacturing car-body components since the benefits to be derived from this technique (such as extending the limitations of forming, enhancing spring back behavior, and delivering a high degree of flexibility in production) have this sector's key problems in mind. The Fraunhofer Institute for Machine Tools and Forming Technology focuses its research on coming up with technology, tool and plant strategies suitable for manufacturing medium-sized and large car-body components. There are two technological directions that IWU targets in this field of research. First of all, given the existing technical and physical process constraints, it is studying the possibilities of large-scale and partial deformation since both directions are of importance for the targeted products. However, these two approaches have very different requirements for designing and tools. The first approach forms components without preforming. Several forming steps are required for mapping typical car-body component shapes either with serial workstations or a flexible tool system. The partial electromagnetic metal forming approach means using integrated plant components, i.e. combining conventional press equipment with a magnetic forming plant. This can tap a potential that encompasses the technological benefits mentioned above while hiking productivity and scaling down the expenditures for investing in equipment
Closed-cycle, low-vibration 4 K cryostat for ion traps and other applications
In-vacuo cryogenic environments are ideal for applications requiring both low
temperatures and extremely low particle densities. This enables reaching long
storage and coherence times for example in ion traps, essential requirements
for experiments with highly charged ions, quantum computation, and optical
clocks. We have developed a novel cryostat continuously refrigerated with a
pulse-tube cryocooler and providing the lowest vibration level reported for
such a closed-cycle system with 1 W cooling power for a <5 K experiment. A
decoupling system suppresses vibrations from the cryocooler by three orders of
magnitude down to a level of 10 nm peak amplitudes in the horizontal plane.
Heat loads of about 40 W (at 45 K) and 1 W (at 4 K) are transferred from an
experimental chamber, mounted on an optical table, to the cryocooler through a
vacuum-insulated massive 120 kg inertial copper pendulum. The 1.4 m long
pendulum allows installation of the cryocooler in a separate, acoustically
isolated machine room. In the laser laboratory, we measured the residual
vibrations using an interferometric setup. The positioning of the 4 K elements
is reproduced to better than a few micrometer after a full thermal cycle to
room temperature. Extreme high vacuum on the mbar level is achieved.
In collaboration with the Max-Planck-Intitut f\"ur Kernphysik (MPIK), such a
setup is now in operation at the Physikalisch-Technische Bundesanstalt (PTB)
for a next-generation optical clock experiment using highly charged ions
Numerical study of multilayer adsorption on fractal surfaces
We report a numerical study of van der Waals adsoprtion and capillary
condensation effects on self-similar fractal surfaces. An assembly of uncoupled
spherical pores with a power-law distributin of radii is used to model fractal
surfaces with adjustable dimensions. We find that the commonly used fractal
Frankel-Halsey-Hill equation systematically fails to give the correct dimension
due to crossover effects, consistent with the findings of recent experiments.
The effects of pore coupling and curvature dependent surface tension were also
studied.Comment: 11 pages, 3 figure
Simulation of anyons with tensor network algorithms
Interacting systems of anyons pose a unique challenge to condensed matter
simulations due to their non-trivial exchange statistics. These systems are of
great interest as they have the potential for robust universal quantum
computation, but numerical tools for studying them are as yet limited. We show
how existing tensor network algorithms may be adapted for use with systems of
anyons, and demonstrate this process for the 1-D Multi-scale Entanglement
Renormalisation Ansatz (MERA). We apply the MERA to infinite chains of
interacting Fibonacci anyons, computing their scaling dimensions and local
scaling operators. The scaling dimensions obtained are seen to be in agreement
with conformal field theory. The techniques developed are applicable to any
tensor network algorithm, and the ability to adapt these ansaetze for use on
anyonic systems opens the door for numerical simulation of large systems of
free and interacting anyons in one and two dimensions.Comment: Fixed typos, matches published version. 16 pages, 21 figures, 4
tables, RevTeX 4-1. For a related work, see arXiv:1006.247
Boundary quantum critical phenomena with entanglement renormalization
We extend the formalism of entanglement renormalization to the study of
boundary critical phenomena. The multi-scale entanglement renormalization
ansatz (MERA), in its scale invariant version, offers a very compact
approximation to quantum critical ground states. Here we show that, by adding a
boundary to the scale invariant MERA, an accurate approximation to the critical
ground state of an infinite chain with a boundary is obtained, from which one
can extract boundary scaling operators and their scaling dimensions. Our
construction, valid for arbitrary critical systems, produces an effective chain
with explicit separation of energy scales that relates to Wilson's RG
formulation of the Kondo problem. We test the approach by studying the quantum
critical Ising model with free and fixed boundary conditions.Comment: 8 pages, 12 figures, for a related work see arXiv:0912.289
First order wetting of rough substrates and quantum unbinding
Replica and functional renormalization group methods show that, with short
range substrate forces or in strong fluctuation regimes, wetting of a
self-affine rough wall in 2D turns first-order as soon as the wall roughness
exponent exceeds the anisotropy index of bulk interface fluctuations. Different
thresholds apply with long range forces in mean field regimes. For
bond-disordered bulk, fixed point stability suggests similar results, which
ultimately rely on basic properties of quantum bound states with asymptotically
power-law repulsive potentials.Comment: 11 pages, 1 figur
- …
