The use of entanglement renormalization in the presence of scale invariance
is investigated. We explain how to compute an accurate approximation of the
critical ground state of a lattice model, and how to evaluate local
observables, correlators and critical exponents. Our results unveil a precise
connection between the multi-scale entanglement renormalization ansatz (MERA)
and conformal field theory (CFT). Given a critical Hamiltonian on the lattice,
this connection can be exploited to extract most of the conformal data of the
CFT that describes the model in the continuum limit.Comment: 4 pages, 3 figures, RevTeX 4. Revised for greater clarit