1,265 research outputs found

    Mechanical On-Chip Microwave Circulator

    Get PDF
    Nonreciprocal circuit elements form an integral part of modern measurement and communication systems. Mathematically they require breaking of time-reversal symmetry, typically achieved using magnetic materials and more recently using the quantum Hall effect, parametric permittivity modulation or Josephson nonlinearities. Here, we demonstrate an on-chip magnetic-free circulator based on reservoir engineered optomechanical interactions. Directional circulation is achieved with controlled phase-sensitive interference of six distinct electro-mechanical signal conversion paths. The presented circulator is compact, its silicon-on-insulator platform is compatible with both superconducting qubits and silicon photonics, and its noise performance is close to the quantum limit. With a high dynamic range, a tunable bandwidth of up to 30 MHz and an in-situ reconfigurability as beam splitter or wavelength converter, it could pave the way for superconducting qubit processors with integrated and multiplexed on-chip signal processing and readout.Comment: References have been update

    The stochastic quantization method and its application to the numerical simulation of volcanic conduit dynamics under random conditions

    Get PDF
    Stochastic Quantization (SQ) is a method for the approximation of a continuous probability distribution with a discrete one. The proposal made in this paper is to apply this technique to reduce the number of numerical simulations for systems with uncertain inputs, when estimates of the output distribution are needed. This question is relevant in volcanology, where realistic simulations are very expensive and uncertainty is always present. We show the results of a benchmark test based on a one-dimensional steady model of magma flow in a volcanic conduit

    In Vitro and Ex Vivo Hemodynamic Testing of an Innovative Occluder for Paravalvular Leak After Transcather Aortic Valve Implantation

    Get PDF
    This study aims at achieving a proof-of-concept for a novel device designed to occlude the orifices that may form between transcatheter valves and host tissues after TAVI. The device effect on the performance of a SAPIEN XT with a paravalvular gap was assessed into an in vitro and ex vivo pulse duplicator. The in vitro tests were performed complying with the standard international regulations, measuring the trasvalvular pressure and regurgitant volumes with and without the paravalvular gap, and with the occluder correctly positioned into the gap. In the second series of tests, the leakage reduction due to the presence of the occluder was assessed for the same setup, into a beating swine heart. The occluder implantation decreased the regurgitant fraction of about 50% for the in vitro assessment and 75% for the ex vivo test, under rest operating conditions. These results suggest that suitably designed occluders can lead to important benefit in the PVL treatment

    Crispr/cas9 editing for gaucher disease modelling

    Get PDF
    Gaucher disease (GD) is an autosomal recessive lysosomal storage disorder caused by mutations in the acid \u3b2-glucosidase gene (GBA1). Besides causing GD, GBA1 mutations constitute the main genetic risk factor for developing Parkinson\u2019s disease. The molecular basis of neurological manifestations in GD remain elusive. However, neuroinflammation has been proposed as a key player in this process. We exploited CRISPR/Cas9 technology to edit GBA1 in the human monocytic THP-1 cell line to develop an isogenic GD model of monocytes and in glioblastoma U87 cell lines to generate an isogenic GD model of glial cells. Both edited (GBA1 mutant) cell lines presented low levels of mutant acid \u3b2-glucosidase expression, less than 1% of residual activity and massive accumulation of substrate. Moreover, U87 GBA1 mutant cells showed that the mutant enzyme was retained in the ER and subjected to proteasomal degradation, triggering unfolded protein response (UPR). U87 GBA1 mutant cells displayed an increased production of interleukin-1\u3b2, both with and without inflammosome activation, \u3b1-syn accumulation and a higher rate of cell death in comparison with wild-type cells. In conclusion, we developed reliable, isogenic, and easy-to-handle cellular models of GD obtained from commercially accessible cells to be employed in GD pathophysiology studies and high-throughput drug screenings
    • …
    corecore