15,554 research outputs found
Spectroscopic studies in open quantum systems
The spectroscopic properties of an open quantum system are determined by the
eigenvalues and eigenfunctions of an effective Hamiltonian H consisting of the
Hamiltonian H_0 of the corresponding closed system and a non-Hermitian
correction term W arising from the interaction via the continuum of decay
channels. The eigenvalues E_R of H are complex. They are the poles of the
S-matrix and provide both the energies and widths of the states. We illustrate
the interplay between Re(H) and Im(H) by means of the different interference
phenomena between two neighboured resonance states. Level repulsion along the
real axis appears if the interaction is caused mainly by Re(H) while a
bifurcation of the widths appears if the interaction occurs mainly due to
Im(H). We then calculate the poles of the S-matrix and the corresponding
wavefunctions for a rectangular microwave resonator with a scatter as a
function of the area of the resonator as well as of the degree of opening to a
guide. The calculations are performed by using the method of exterior complex
scaling. Re(W) and Im(W) cause changes in the structure of the wavefunctions
which are permanent, as a rule. At full opening to the lead, short-lived
collective states are formed together with long-lived trapped states. The
wavefunctions of the short-lived states at full opening to the lead are very
different from those at small opening. The resonance picture obtained from the
microwave resonator shows all the characteristic features known from the study
of many-body systems in spite of the absence of two-body forces. The poles of
the S-matrix determine the conductance of the resonator. Effects arising from
the interplay between resonance trapping and level repulsion along the real
axis are not involved in the statistical theory.Comment: The six jpg files are not included in the tex-fil
Influence of surface roughness on superhydrophobicity
Superhydrophobic surfaces, with liquid contact angle theta greater than 150
degree, have important practical applications ranging from self-cleaning window
glasses, paints, and fabrics to low-friction surfaces. Many biological
surfaces, such as the lotus leaf, have hierarchically structured surface
roughness which is optimized for superhydrophobicity through natural selection.
Here we present a molecular dynamics study of liquid droplets in contact with
self-affine fractal surfaces. Our results indicate that the contact angle for
nanodroplets depends strongly on the root-mean-square surface roughness
amplitude but is nearly independent of the fractal dimension D_f of the
surface.Comment: 5 Pages, 6 figures. Minimal changes with respect to the previous
versio
Interfacial separation between elastic solids with randomly rough surfaces: comparison of experiment with theory
We study the average separation between an elastic solid and a hard solid
with a nominal flat but randomly rough surface, as a function of the squeezing
pressure. We present experimental results for a silicon rubber (PDMS) block
with a flat surface squeezed against an asphalt road surface. The theory shows
that an effective repulse pressure act between the surfaces of the form p
proportional to exp(-u/u0), where u is the average separation between the
surfaces and u0 a constant of order the root-mean-square roughness, in good
agreement with the experimental results.Comment: 6 pages, 10 figure
Fluid flow at the interface between elastic solids with randomly rough surfaces
I study fluid flow at the interface between elastic solids with randomly
rough surfaces. I use the contact mechanics model of Persson to take into
account the elastic interaction between the solid walls and the Bruggeman
effective medium theory to account for the influence of the disorder on the
fluid flow. I calculate the flow tensor which determines the pressure flow
factor and, e.g., the leak-rate of static seals. I show how the perturbation
treatment of Tripp can be extended to arbitrary order in the ratio between the
root-mean-square roughness amplitude and the average interfacial surface
separation. I introduce a matrix D(Zeta), determined by the surface roughness
power spectrum, which can be used to describe the anisotropy of the surface at
any magnification Zeta. I present results for the asymmetry factor Gamma(Zeta)
(generalized Peklenik number) for grinded steel and sandblasted PMMA surfaces.Comment: 16 pages, 14 figure
A reduction principle for Fourier coefficients of automorphic forms
In this paper we analyze a general class of Fourier coefficients of
automorphic forms on reductive adelic groups
and their covers. We prove that any such
Fourier coefficient is expressible through integrals and sums involving
'Levi-distinguished' Fourier coefficients. By the latter we mean the class of
Fourier coefficients obtained by first taking the constant term along the
nilradical of a parabolic subgroup, and then further taking a Fourier
coefficient corresponding to a -distinguished nilpotent orbit in
the Levi quotient. In a follow-up paper we use this result to establish
explicit formulas for Fourier expansions of automorphic forms attached to
minimal and next-to-minimal representations of simply-laced reductive groups.Comment: 35 pages. v2: Extended results and paper split into two parts with
second part appearing soon. New title to reflect new focus of this part. v3:
Minor corrections and updated reference to the second part that has appeared
as arXiv:1908.08296. v4: Minor corrections and reformulation
Transverse thermal depinning and nonlinear sliding friction of an adsorbed monolayer
We study the response of an adsorbed monolayer under a driving force as a
model of sliding friction phenomena between two crystalline surfaces with a
boundary lubrication layer. Using Langevin-dynamics simulation, we determine
the nonlinear response in the direction transverse to a high symmetry direction
along which the layer is already sliding. We find that below a finite
transition temperature, there exist a critical depinning force and hysteresis
effects in the transverse response in the dynamical state when the adlayer is
sliding smoothly along the longitudinal direction.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let
- …
