15,554 research outputs found

    Spectroscopic studies in open quantum systems

    Get PDF
    The spectroscopic properties of an open quantum system are determined by the eigenvalues and eigenfunctions of an effective Hamiltonian H consisting of the Hamiltonian H_0 of the corresponding closed system and a non-Hermitian correction term W arising from the interaction via the continuum of decay channels. The eigenvalues E_R of H are complex. They are the poles of the S-matrix and provide both the energies and widths of the states. We illustrate the interplay between Re(H) and Im(H) by means of the different interference phenomena between two neighboured resonance states. Level repulsion along the real axis appears if the interaction is caused mainly by Re(H) while a bifurcation of the widths appears if the interaction occurs mainly due to Im(H). We then calculate the poles of the S-matrix and the corresponding wavefunctions for a rectangular microwave resonator with a scatter as a function of the area of the resonator as well as of the degree of opening to a guide. The calculations are performed by using the method of exterior complex scaling. Re(W) and Im(W) cause changes in the structure of the wavefunctions which are permanent, as a rule. At full opening to the lead, short-lived collective states are formed together with long-lived trapped states. The wavefunctions of the short-lived states at full opening to the lead are very different from those at small opening. The resonance picture obtained from the microwave resonator shows all the characteristic features known from the study of many-body systems in spite of the absence of two-body forces. The poles of the S-matrix determine the conductance of the resonator. Effects arising from the interplay between resonance trapping and level repulsion along the real axis are not involved in the statistical theory.Comment: The six jpg files are not included in the tex-fil

    Influence of surface roughness on superhydrophobicity

    Get PDF
    Superhydrophobic surfaces, with liquid contact angle theta greater than 150 degree, have important practical applications ranging from self-cleaning window glasses, paints, and fabrics to low-friction surfaces. Many biological surfaces, such as the lotus leaf, have hierarchically structured surface roughness which is optimized for superhydrophobicity through natural selection. Here we present a molecular dynamics study of liquid droplets in contact with self-affine fractal surfaces. Our results indicate that the contact angle for nanodroplets depends strongly on the root-mean-square surface roughness amplitude but is nearly independent of the fractal dimension D_f of the surface.Comment: 5 Pages, 6 figures. Minimal changes with respect to the previous versio

    Interfacial separation between elastic solids with randomly rough surfaces: comparison of experiment with theory

    Full text link
    We study the average separation between an elastic solid and a hard solid with a nominal flat but randomly rough surface, as a function of the squeezing pressure. We present experimental results for a silicon rubber (PDMS) block with a flat surface squeezed against an asphalt road surface. The theory shows that an effective repulse pressure act between the surfaces of the form p proportional to exp(-u/u0), where u is the average separation between the surfaces and u0 a constant of order the root-mean-square roughness, in good agreement with the experimental results.Comment: 6 pages, 10 figure

    Fluid flow at the interface between elastic solids with randomly rough surfaces

    Full text link
    I study fluid flow at the interface between elastic solids with randomly rough surfaces. I use the contact mechanics model of Persson to take into account the elastic interaction between the solid walls and the Bruggeman effective medium theory to account for the influence of the disorder on the fluid flow. I calculate the flow tensor which determines the pressure flow factor and, e.g., the leak-rate of static seals. I show how the perturbation treatment of Tripp can be extended to arbitrary order in the ratio between the root-mean-square roughness amplitude and the average interfacial surface separation. I introduce a matrix D(Zeta), determined by the surface roughness power spectrum, which can be used to describe the anisotropy of the surface at any magnification Zeta. I present results for the asymmetry factor Gamma(Zeta) (generalized Peklenik number) for grinded steel and sandblasted PMMA surfaces.Comment: 16 pages, 14 figure

    A reduction principle for Fourier coefficients of automorphic forms

    Get PDF
    In this paper we analyze a general class of Fourier coefficients of automorphic forms on reductive adelic groups G(AK)\mathbf{G}(\mathbb{A}_\mathbb{K}) and their covers. We prove that any such Fourier coefficient is expressible through integrals and sums involving 'Levi-distinguished' Fourier coefficients. By the latter we mean the class of Fourier coefficients obtained by first taking the constant term along the nilradical of a parabolic subgroup, and then further taking a Fourier coefficient corresponding to a K\mathbb{K}-distinguished nilpotent orbit in the Levi quotient. In a follow-up paper we use this result to establish explicit formulas for Fourier expansions of automorphic forms attached to minimal and next-to-minimal representations of simply-laced reductive groups.Comment: 35 pages. v2: Extended results and paper split into two parts with second part appearing soon. New title to reflect new focus of this part. v3: Minor corrections and updated reference to the second part that has appeared as arXiv:1908.08296. v4: Minor corrections and reformulation

    Transverse thermal depinning and nonlinear sliding friction of an adsorbed monolayer

    Full text link
    We study the response of an adsorbed monolayer under a driving force as a model of sliding friction phenomena between two crystalline surfaces with a boundary lubrication layer. Using Langevin-dynamics simulation, we determine the nonlinear response in the direction transverse to a high symmetry direction along which the layer is already sliding. We find that below a finite transition temperature, there exist a critical depinning force and hysteresis effects in the transverse response in the dynamical state when the adlayer is sliding smoothly along the longitudinal direction.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let
    corecore