844 research outputs found

    Determination of the lowest energy structure of Ag8_8 from first-principles calculations

    Full text link
    The ground-state electronic and structural properties, and the electronic excitations of the lowest energy isomers of the Ag8_8 cluster are calculated using density functional theory (DFT) and time-dependent DFT (TDDFT) in real time and real space scheme, respectively. The optical spectra provided by TDDFT predict that the D2d_{2d} dodecahedron isomer is the structural minimum of Ag8_8 cluster. Indeed, it is borne out by the experimental findings.Comment: 4 pages, 2 figures. Accepted in Physical Review A as a brief repor

    Magnetic properties of Ruddlesden-Popper phases Sr3x_{3-x}Yx_{x}(Fe1.25_{1.25}Ni0.75_{0.75})O7δ_{7-\delta}: A combined experimental and theoretical investigation

    Get PDF
    We present a comprehensive study of the magnetic properties of Sr3x_{3-x}Yx_{x}(Fe1.25_{1.25}Ni0.75_{0.75})O7δ_{7-\delta} (0x0.750 \leq x \leq 0.75). Experimentally, the magnetic properties are investigated using superconducting quantum interference device (SQUID) magnetometry and neutron powder diffraction (NPD). This is complemented by the theoretical study based on density functional theory as well as the Heisenberg exchange parameters. Experimental results show an increase in the N\'eel temperature (TNT_N) with the increase of Y concentrations and O occupancy. The NPD data reveals all samples are antiferromagnetically ordered at low temperatures, which has been confirmed by our theoretical simulations for the selected samples. Our first-principles calculations suggest that the 3D magnetic order is stabilized due to finite inter-layer exchange couplings. The latter give rise to a finite inter-layer spin correlations which disappear above the TNT_N

    Spin excitations in a single La2_2CuO4_4 layer

    Full text link
    The dynamics of S=1/2 quantum spins on a 2D square lattice lie at the heart of the mystery of the cuprates \cite{Hayden2004,Vignolle2007,Li2010,LeTacon2011,Coldea2001,Headings2010,Braicovich2010}. In bulk cuprates such as \LCO{}, the presence of a weak interlayer coupling stabilizes 3D N\'{e}el order up to high temperatures. In a truly 2D system however, thermal spin fluctuations melt long range order at any finite temperature \cite{Mermin1966}. Further, quantum spin fluctuations transfer magnetic spectral weight out of a well-defined magnon excitation into a magnetic continuum, the nature of which remains controversial \cite{Sandvik2001,Ho2001,Christensen2007,Headings2010}. Here, we measure the spin response of \emph{isolated one-unit-cell thick layers} of \LCO{}. We show that coherent magnons persist even in a single layer of \LCO{} despite the loss of magnetic order, with no evidence for resonating valence bond (RVB)-like spin correlations \cite{Anderson1987,Hsu1990,Christensen2007}. Thus these excitations are well described by linear spin wave theory (LSWT). We also observe a high-energy magnetic continuum in the isotropic magnetic response. This high-energy continuum is not well described by 2 magnon LSWT, or indeed any existing theories.Comment: Revised version to appear in Nature Materials; 6 pages,4 figure

    Human mesenchymal stem cells response to multi-doped silicon-strontium calcium phosphate coatings

    Get PDF
    The search for apatitic calcium phosphate coatings to improve implants osteointegration is, nowadays, preferentially focused in the obtaining of compositions closer to that of the inorganic phase of bone. Silicon and strontium are both present in trace concentrations in natural bone and have been demonstrated, by separate, to significantly improve osteoblastic response on calcium phosphate bioceramics. This work aims the controlled and simultaneous multidoping of carbonated calcium phosphate coatings with both elements, Si and Sr, by pulsed laser deposition technique and the biological response of human mesenchymal stem cells to them. A complete physicochemical characterization has been also performed to analyze the coatings and significant positive effect was obtained at the osteogenic differentiation of cells, confirming the enormous potential of this multi-doping coating approach.Technical staff of CACTI (University of Vigo) is gratefully acknowledged. This work was partially supported by the UE-POCTEP 0330IBEROMARE1P project, UE-INTERREG 2011-1/164MARMED and Ministerio de Ciencia e Innovacion (Project MAT2010-18281). M Lopez-Alvarez thanks funding support from FP7/REGPOT-2012-2013.1 (no 316265, BIOCAPS)

    Heat-conserving three-temperature model for ultrafast demagnetization of 3d ferromagnets

    Full text link
    We study the ultrafast magnetization dynamics of bcc Fe and fcc Co using the recently suggested heat-conserving three-temperature model (HC3TM), together with atomistic spin- and lattice dynamics simulations. It is shown that this type of Langevin-based simulation is able to reproduce observed trends of the ultrafast magnetization dynamics of fcc Co and bcc Fe, in agreement with previous findings for fcc Ni. The simulations are performed by using parameters that to as large extent as possible are obtained from electronic structure theory. The one parameter that was not calculated in this way, was the damping term used for the lattice dynamics simulations, and here a range of parameters were investigated. It is found that this term has a large influence on the details of the magnetization dynamics. The dynamics of iron and cobalt is compared with previous results for nickel and similarities and differences in the materials' behavior are analysed following the absorption of a femtosecond laser pulse. Importantly, for all elements investigated so far with this model, we obtain a linear relationship between the value of the maximally demagnetized state and the fluence of the laser pulse, which is in agreement with experiments.Comment: 9 pages, 9 figures, Submitted to Physical Review

    Sorption of fluorinated greenhouse gases in silica-supported fluorinated ionic liquids

    Get PDF
    the contracts of Individual Call to Scientific Employment Stimulus 2020.00835.CEECIND (J.M.M.A.) / 2021.01432.CEECIND (A.B.P.), the Norma Transitória DL 57/2016. Publisher Copyright: © 2022 The Authors.The Kigali Amendment to the Montreal Protocol limits the global use of fluorinated greenhouse gases (F-gases) and encourages the development of a new generation of refrigerants with lower global warming potential. Therefore, there is a need to develop efficient and sustainable technologies to selectively capture and recycle the F-gases as new environmentally sustainable refrigerants. Here, ionic liquids (ILs) with high F-gas uptake capacity and selectivity were supported on silica and their potential as media for selective F-gas sorption was studied. For this purpose single-component sorption equilibria of difluoromethane (R-32), pentafluoroethane (R-125), and 1,1,1,2-tetrafluoroethane (R-134a) were measured at 303.15 K by gravimetry. The sorption data were successfully correlated using classical models of sorption thermodynamics. The results show that the IL supported in the porous volume and on the external surface of the porous silica controls the F-gas uptake in the composites and that changing the IL's cations and anions allows fine-tuning the selectivity of the sorption process. This work brings crucial knowledge for the development of new materials based on ILs for the selective sorption of F-gases.publishersversionpublishe

    Absorption of Fluorinated Greenhouse Gases Using Fluorinated Ionic Liquids

    Get PDF
    funding of the KET4F-Gas project, SOE2/P1/P0823, co -funded by the Interreg Sudoe Programme through the European Regional Development Fund (ERDF). FCT/MCTES for financial support through IF/00190/2014 , IF/00210/2014 financial support through the Norma TransitOria DL 57/2016 Program Contract (FCT/MCTES). FCT/MCTES (UID/QUI/50006/2019).The increasing awareness of the environmental impact of fluorinated gases (F-gases) used in refrigeration is instigating the development of technologies to recover and recycle them. With this goal in mind, single-component absorption equilibrium isotherms at 303.15 K of F-gases in different ionic liquids (ILs) were determined using a gravimetric method. The selected F-gases are the most used in domestic refrigeration (R-32: difluoromethane, R-125: pentafluoroethane, and R-134a: 1,1,1,2-tetrafluoroethane). The results show that ILs containing a fluorinated alkyl side chain with four carbon atoms, that is, fluorinated ILs (FILs), have higher gas absorption capacity than conventional fluoro-containing ILs. All studied ILs showed ideal selectivity toward R-134a. Conventional fluoro-containing ILs showed better selectivities for the separation of the binary mixtures R-134a/R-125 and R-32/R-125, and FILs showed better selectivities for the R-134a/R-32 mixture. These results provide fundamental knowledge of the behavior of these new alternative solvents and key information for their application in the separation of F-gas mixtures of commercial refrigerants.authorsversionpublishe

    Biochemistry of malaria parasite infected red blood cells by X-ray microscopy

    Get PDF
    Red blood cells infected by the malaria parasite Plasmodium falciparum are correlatively imaged by tomography using soft X-rays as well as by scanning hard nano-X-ray beam to obtain fluorescence maps of various elements such as S and Fe. In this way one can deduce the amount of Fe bound either in hemoglobin or in hemozoin crystals in the digestive vacuole of the malaria parasite as well as determine the hemoglobin concentrations in the cytosols of the red blood cell and of the parasite. Fluorescence map of K shows that in the parasite's schizont stage the K concentration in the red blood cell cytosol is diminished by a factor of seven relative to a pristine red blood cell but the total amount of K in the infected red blood cell is the same as in the pristine red blood cell
    corecore