351 research outputs found

    Effect of conduction electron interactions on Anderson impurities

    Full text link
    The effect of conduction electron interactions for an Anderson impurity is investigated in one dimension using a scaling approach. The flow diagrams are obtained by solving the renormalization group equations numerically. It is found that the Anderson impurity case is different from its counterpart -- the Kondo impurity case even in the local moment region. The Kondo temperature for an Anderson impurity shows nonmonotonous behavior, increasing for weak interactions but decreasing for strong interactions. The implication of the study to other related impurity models is also discussed.Comment: 10 pages, revtex, 4 figures (the postscript file is included), to appear in Phys. Rev. B (Rapid Commun.

    Ultrafast Nonlinear Optical Response of Strongly Correlated Systems: Dynamics in the Quantum Hall Effect Regime

    Full text link
    We present a theoretical formulation of the coherent ultrafast nonlinear optical response of a strongly correlated system and discuss an example where the Coulomb correlations dominate. We separate out the correlated contributions to the third-order nonlinear polarization, and identify non-Markovian dephasing effects coming from the non-instantaneous interactions and propagation in time of the collective excitations of the many-body system. We discuss the signatures, in the time and frequency dependence of the four-wave-mixing (FWM) spectrum, of the inter-Landau level magnetoplasmon (MP) excitations of the two-dimensional electron gas (2DEG) in a perpendicular magnetic field. We predict a resonant enhancement of the lowest Landau level (LL) FWM signal, a strong non-Markovian dephasing of the next LL magnetoexciton (X), a symmetric FWM temporal profile, and strong oscillations as function of time delay, of quantum kinetic origin. We show that the correlation effects can be controlled experimentally by tuning the central frequency of the optical excitation between the two lowest LLs.Comment: 21 pages, 10 figure

    All-optical four-state magnetization reversal in (Ga,Mn)As ferromagnetic semiconductors

    Full text link
    Using density matrix equations of motion and a tight-binding band calculation, we predict all-optical switching between four metastable magnetic states of (III,Mn)As ferromagnets. This switching is initiated non-thermally within 100fs, during nonlinear coherent photoexcitation. For a single optical pulse, magnetization reversal is completed after ∼\sim100 ps and controlled by the coherent femtosecond photoexcitation. Our predicted switching comes from magnetic nonlinearities triggered by a femtosecond magnetization tilt that is sensitive to un--adiabatic light--induced spin interactions.Comment: 3 pages, 2 figures, submitted in Applied Physics Letter

    Ultrafast Coulomb-induced dynamics of 2D magnetoexcitons

    Full text link
    We study theoretically the ultrafast nonlinear optical response of quantum well excitons in a perpendicular magnetic field. We show that for magnetoexcitons confined to the lowest Landau levels, the third-order four-wave-mixing (FWM) polarization is dominated by the exciton-exciton interaction effects. For repulsive interactions, we identify two regimes in the time-evolution of the optical polarization characterized by exponential and {\em power law} decay of the FWM signal. We describe these regimes by deriving an analytical solution for the memory kernel of the two-exciton wave-function in strong magnetic field. For strong exciton-exciton interactions, the decay of the FWM signal is governed by an antibound resonance with an interaction-dependent decay rate. For weak interactions, the continuum of exciton-exciton scattering states leads to a long tail of the time-integrated FWM signal for negative time delays, which is described by the product of a power law and a logarithmic factor. By combining this analytic solution with numerical calculations, we study the crossover between the exponential and non-exponential regimes as a function of magnetic field. For attractive exciton-exciton interaction, we show that the time-evolution of the FWM signal is dominated by the biexcitonic effects.Comment: 41 pages with 11 fig

    Non-Fermi liquid behavior in an extended Anderson model

    Full text link
    An extended Anderson model, including screening channels (non-hybridizing, but interacting with the local orbit), is studied within the Anderson-Yuval approach, originally devised for the single-channel Kondo problem. By comparing the perturbation expansions of this model and a generalized resonant level model, the spin-spin correlation functions are calculated which show non-Fermi liquid exponent depending on the strength of the scattering potential. The relevance of this result to experiments in some heavy fermion systems is briefly discussed.Comment: REVTEX, 17 pages, no figures, to be published in Phys. Rev.

    Fermi-edge singularities in linear and non-linear ultrafast spectroscopy

    Get PDF
    We discuss Fermi-edge singularity effects on the linear and nonlinear transient response of an electron gas in a doped semiconductor. We use a bosonization scheme to describe the low energy excitations, which allows to compute the time and temperature dependence of the response functions. Coherent control of the energy absorption at resonance is analyzed in the linear regime. It is shown that a phase-shift appears in the coherent control oscillations, which is not present in the excitonic case. The nonlinear response is calculated analytically and used to predict that four wave-mixing experiments would present a Fermi-edge singularity when the exciting energy is varied. A new dephasing mechanism is predicted in doped samples that depends linearly on temperature and is produced by the low-energy bosonic excitations in the conduction band.Comment: long version; 9 pages, 4 figure

    Scaling Law for a Magnetic Impurity Model with Two-Body Hybridization

    Full text link
    We consider a magnetic impurity coupled to the hybridizing and screening channels of a conduction band. The model is solved in the framework of poor man's scaling and Cardy's generalized theories. We point out that it is important to include a two-body hybridization if the scaling theory is to be valid for the band width larger than UU. We map out the boundary of the Fermi-non-Fermi liquid phase transition as a function of the model parameters.Comment: 14 pages, latex, 1 figure included
    • …
    corecore