54 research outputs found

    Crop–livestock-integrated farming system: a strategy to achieve synergy between agricultural production, nutritional security, and environmental sustainability

    Get PDF
    IntroductionClimate change, nutritional security, land shrinkage, and an increasing human population are the most concerning factors in agriculture, which are further complicated by deteriorating soil health. Among several ways to address these issues, the most prominent and cost-effective means is to adopt an integrated farming system (IFS). Integrating farming systems with livestock enables a way to increase economic yield per unit area per unit of time for farmers in small and marginal categories. This system effectively utilizes the waste materials by recycling them via linking appropriate components, thereby minimizing the pollution caused to the environment. Further integrating livestock components with crops and the production of eggs, meat, and milk leads to nutritional security and stable farmer's income generation. So, there is a dire need to develop an eco-friendly, ecologically safe, and economically profitable IFS model.MethodsAn experiment was conducted to develop a crop–livestock-based integrated farming system model for the benefit of irrigated upland farmers in the semi-arid tropics for increasing productivity, farm income, employment generation, and food and nutritional security through efficient utilization of resources in the farming system.Results and discussionThe IFS model has components, viz., crop (0.85 ha) + horticulture (0.10 ha) + 2 cattles along with 2 calves in dairy (50 m2) + 12 female goats and 1 male goat (50 m2) + 150 numbers of poultry birds (50 m2) + vermicompost (50 m2) + kitchen garden (0.02 ha) + boundary planting + supporting activities (0.01 ha) in a one-hectare area. The model recorded a higher total MEY (162.31 t), gross return (689,773), net return (317,765), and employment generation (475 mandays). Further negative emissions of −15,118 CO2-e (kg) greenhouse gases were recorded under this model. The study conclusively reveals that integration of crop, horticulture, dairy, goat, poultry, vermicompost production, kitchen garden, and boundary planting models increases the net returns, B:C ratio, employment generation, nutritional security, and livelihoods of small and marginal farmers

    Biosurfactants produced by Bacillus subtilis A1 and Pseudomonas stutzeri NA3 reduce longevity and fecundity of Anopheles stephensi and show high toxicity against young instars

    Get PDF
    Anopheles stephensi acts as vector of Plasmodium parasites, which are responsible for malaria in tropical and subtropical areas worldwide. Currently, malaria management is a big challenge due to the presence of insecticide-resistant strains as well as to the development of Plasmodium species highly resistant to major antimalarial drugs. Therefore, the present study focused on biosurfactant produced by two bacteria Bacillus subtilis A1 and Pseudomonas stutzeri NA3, evaluating them for insecticidal applications against malaria mosquitoes. The produced biosurfactants were characterized using FT-IR spectroscopy and gas chromatography-mass spectrometry (GC-MS), which confirmed that biosurfactants had a lipopeptidic nature. Both biosurfactants were tested against larvae and pupae of A. stephensi. LC50 values were 3.58 (larva I), 4.92 (II), 5.73 (III), 7.10 (IV), and 7.99 (pupae) and 2.61 (I), 3.68 (II), 4.48 (III), 5.55 (IV), and 6.99 (pupa) for biosurfactants produced by B. subtilis A1 and P. stutzeri NA3, respectively. Treatments with bacterial surfactants led to various physiological changes including longer pupal duration, shorter adult oviposition period, and reduced longevity and fecundity. To the best of our knowledge, there are really limited reports on the mosquitocidal and physiological effects due to biosurfactant produced by bacterial strains. Overall, the toxic activity of these biosurfactant on all young instars of A. stephensi, as well as their major impact on adult longevity and fecundity, allows their further consideration for the development of insecticides in the fight against malaria mosquitoes

    Using creative co-design to develop a decision support tool for people with malignant pleural effusion

    Get PDF
    Abstract: Background: Malignant pleural effusion (MPE) is a common, serious problem predominantly seen in metastatic lung and breast cancer and malignant pleural mesothelioma. Recurrence of malignant pleural effusion is common, and symptoms significantly impair people’s daily lives. Numerous treatment options exist, yet choosing the most suitable depends on many factors and making decisions can be challenging in pressured, time-sensitive clinical environments. Clinicians identified a need to develop a decision support tool. This paper reports the process of co-producing an initial prototype tool. Methods: Creative co-design methods were used. Three pleural teams from three disparate clinical sites in the UK were involved. To overcome the geographical distance between sites and the ill-health of service users, novel distributed methods of creative co-design were used. Local workshops were designed and structured, including video clips of activities. These were run on each site with clinicians, patients and carers. A joint national workshop was then conducted with representatives from all stakeholder groups to consider the findings and outputs from local meetings. The design team worked with participants to develop outputs, including patient timelines and personas. These were used as the basis to develop and test prototype ideas. Results: Key messages from the workshops informed prototype development. These messages were as follows. Understanding and managing the pleural effusion was the priority for patients, not their overall cancer journey. Preferred methods for receiving information were varied but visual and graphic approaches were favoured. The main influences on people’s decisions about their MPE treatment were personal aspects of their lives, for example, how active they are, what support they have at home. The findings informed the development of a first prototype/service visualisation (a video representing a web-based support tool) to help people identify personal priorities and to guide shared treatment decisions. Conclusion: The creative design methods and distributed model used in this project overcame many of the barriers to traditional co-production methods such as power, language and time. They allowed specialist pleural teams and service users to work together to create a patient-facing decision support tool owned by those who will use it and ready for implementation and evaluation

    Crystal growth, structural and optical characterization of a semi-organic single crystal for frequency conversion applications

    Get PDF
    Single crystals of semi-organic L-histidine hydrobromide have been grown by slow evaporation technique from a mixture of L-histidine and hydrobromic acid in aqueous solution at ambient temperature. From high-resolution X-ray diffraction analysis, the crystalline perfection of the grown crystal has been studied. Single crystal X-ray diffraction analyses, Nuclear Magnetic Resonance spectral analysis, Thermo-Gravimetry (TG), Differential Thermal Analysis (DTA) and hardness test have been employed to characterize the as-grown crystals. The UV cutoff wavelength of the grown crystal is below 300 nm and has a wide transparency window, which is suitable for second harmonic generation of laser in the blue region. Nonlinear optical characteristics have been studied using Q switched Nd:YAG laser (lambda=1064 nm). The second harmonic generation conversion efficiency of the grown crystals confirms their suitability for frequency conversion applications

    Crystal growth, structural and thermal studies of amino acids admixtured L-arginine phosphate monohydrate single crystals

    No full text
    To study the improved characteristics of l-arginine phosphate monohydrate (LAP) crystals, amino acids mixed LAP crystals have been grown by slow cooling method. Amino acids like glycine, l-alanine, and l-valine have been selected for doping. Optical quality bulk crystals have been harvested after a typical growth period of about twenty days. The effect of amino acids in the crystal lattice and molecular vibrational frequencies of various functional groups in the crystals have been studied using X-ray powder diffraction and Fourier Transform infrared (FTIR) analyses respectively. Thermal behavior of the amino acids mixed LAP crystals have been studied from the TG and DTG analyses. High-resolution X-ray diffraction studies have been carried out to find the crystalline nature. Optical transmission studies have been carried out by UV–vis spectrophotometer. The cut off wavelength is below 240 nm for the grown crystals
    • …
    corecore