2,039 research outputs found
Euler Obstruction and Defects of Functions on Singular Varieties
Several authors have proved Lefschetz type formulae for the local Euler
obstruction. In particular, a result of this type is proved in [BLS].The
formula proved in that paper turns out to be equivalent to saying that the
local Euler obstruction, as a constructible function, satisfies the local Euler
condition (in bivariant theory) with respect to general linear forms.
The purpose of this work is to understand what prevents the local Euler
obstruction of satisfying the local Euler condition with respect to functions
which are singular at the considered point. This is measured by an invariant
(or ``defect'') of such functions that we define below. We give an
interpretation of this defect in terms of vanishing cycles, which allows us to
calculate it algebraically. When the function has an isolated singularity, our
invariant can be defined geometrically, via obstruction theory. We notice that
this invariant unifies the usual concepts of {\it the Milnor number} of a
function and of the {\it local Euler obstruction} of an analytic set.Comment: 18 page
Accidental SUSY: Enhanced Bulk Supersymmetry from Brane Back-reaction
We compute how bulk loops renormalize both bulk and brane effective
interactions for codimension-two branes in 6D gauged chiral supergravity, as
functions of the brane tension and brane-localized flux. We do so by explicitly
integrating out hyper- and gauge-multiplets in 6D gauged chiral supergravity
compactified to 4D on a flux-stabilized 2D rugby-ball geometry, specializing
the results of a companion paper, arXiv:1210.3753, to the supersymmetric case.
While the brane back-reaction generically breaks supersymmetry, we show that
the bulk supersymmetry can be preserved if the amount of brane-localized flux
is related in a specific BPS-like way to the brane tension, and verify that the
loop corrections to the brane curvature vanish in this special case. In these
systems it is the brane-bulk couplings that fix the size of the extra
dimensions, and we show that in some circumstances the bulk geometry
dynamically adjusts to ensure the supersymmetric BPS-like condition is
automatically satisfied. We investigate the robustness of this residual
supersymmetry to loops of non-supersymmetric matter on the branes, and show
that supersymmetry-breaking effects can enter only through effective brane-bulk
interactions involving at least two derivatives. We comment on the relevance of
this calculation to proposed applications of codimension-two 6D models to
solutions of the hierarchy and cosmological constant problems.Comment: 49 pages + appendices. This is the final version to appear in JHE
Order and Disorder in AKLT Antiferromagnets in Three Dimensions
The models constructed by Affleck, Kennedy, Lieb, and Tasaki describe a
family of quantum antiferromagnets on arbitrary lattices, where the local spin
S is an integer multiple M of half the lattice coordination number. The equal
time quantum correlations in their ground states may be computed as finite
temperature correlations of a classical O(3) model on the same lattice, where
the temperature is given by T=1/M. In dimensions d=1 and d=2 this mapping
implies that all AKLT states are quantum disordered. We consider AKLT states in
d=3 where the nature of the AKLT states is now a question of detail depending
upon the choice of lattice and spin; for sufficiently large S some form of Neel
order is almost inevitable. On the unfrustrated cubic lattice, we find that all
AKLT states are ordered while for the unfrustrated diamond lattice the minimal
S=2 state is disordered while all other states are ordered. On the frustrated
pyrochlore lattice, we find (conservatively) that several states starting with
the minimal S=3 state are disordered. The disordered AKLT models we report here
are a significant addition to the catalog of magnetic Hamiltonians in d=3 with
ground states known to lack order on account of strong quantum fluctuations.Comment: 7 pages, 2 figure
Low Temperature metamagnetism and Hall effect anomaly in Kondo compound CeAgBi2
Heavy fermion (HF) materials exhibit a rich array of phenomena due to the
strong Kondo coupling between their localized moments and itinerant electrons.
A central question in their study is to understand the interplay between
magnetic order and charge transport, and its role in stabilizing new quantum
phases of matter. Particularly promising in this regard is a family of
tetragonal intermetallic compounds Ce{} ( transition metal,
pnictogen), that includes a variety of HF compounds showing -linear
electronic specific heat , with 20-500
mJmol~K, reflecting an effective mass enhancement ranging
from small to modest. Here, we study the low-temperature field-tuned phase
diagram of high-quality CeAgBi using magnetometry and transport
measurements. We find an antiferromagnetic transition at ~K with
weak magnetic anisotropy and the easy axis along the -axis, similar to
previous reports (~K). This scenario, along with the presence of
two anisotropic Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions, leads to a
rich field-tuned magnetic phase diagram, consisting of five metamagnetic
transitions of both first and second order. In addition, we unveil an anomalous
Hall contribution for fields kOe which is drastically altered when
is tuned through a trio of transitions at 57, 78, and 84~kOe, suggesting that
the Fermi surface is reconstructed in a subset of the metamagnetic transitions.Comment: (*equal contribution
Testing general relativity using golden black-hole binaries
The coalescences of stellar-mass black-hole binaries through their inspiral,
merger, and ringdown are among the most promising sources for ground-based
gravitational-wave (GW) detectors. If a GW signal is observed with sufficient
signal-to-noise ratio, the masses and spins of the black holes can be estimated
from just the inspiral part of the signal. Using these estimates of the initial
parameters of the binary, the mass and spin of the final black hole can be
uniquely predicted making use of general-relativistic numerical simulations. In
addition, the mass and spin of the final black hole can be independently
estimated from the merger--ringdown part of the signal. If the binary black
hole dynamics is correctly described by general relativity (GR), these
independent estimates have to be consistent with each other. We present a
Bayesian implementation of such a test of general relativity, which allows us
to combine the constraints from multiple observations. Using kludge modified GR
waveforms, we demonstrate that this test can detect sufficiently large
deviations from GR, and outline the expected constraints from upcoming GW
observations using the second-generation of ground-based GW detectors.Comment: 5 pages, 2 fig
Observation of Coherent Helimagnons and Gilbert damping in an Itinerant Magnet
We study the magnetic excitations of itinerant helimagnets by applying
time-resolved optical spectroscopy to Fe0.8Co0.2Si. Optically excited
oscillations of the magnetization in the helical state are found to disperse to
lower frequency as the applied magnetic field is increased; the fingerprint of
collective modes unique to helimagnets, known as helimagnons. The use of
time-resolved spectroscopy allows us to address the fundamental magnetic
relaxation processes by directly measuring the Gilbert damping, revealing the
versatility of spin dynamics in chiral magnets. (*These authors contributed
equally to this work
Pulmonary tuberculosis in outpatients in Sabah, Malaysia: Advanced disease but low incidence of HIV co-infection
BackgroundTuberculosis (TB) is generally well controlled in Malaysia, but remains an important problem in the nation’s eastern states. In order to better understand factors contributing to high TB rates in the eastern state of Sabah, our aims were to describe characteristics of patients with TB at a large outpatient clinic, and determine the prevalence of HIV co-infection. Additionally, we sought to test sensitivity and specificity of the locally-available point-of-care HIV test kits.MethodsWe enrolled consenting adults with smear-positive pulmonary TB for a 2-year period at Luyang Clinic, Kota Kinabalu, Malaysia. Participants were questioned about ethnicity, smoking, prior TB, disease duration, symptoms and comorbidities. Chest radiographs were scored using a previously devised tool. HIV was tested after counselling using 2 point-of-care tests for each patient: the test routinely in use at the TB clinic (either Advanced Quality™ Rapid Anti-HIV 1&2, FACTS anti-HIV 1/2 RAPID or HIV (1 + 2) Antibody Colloidal Gold), and a comparator test (Abbott Determine™ HIV-1/2, Inverness Medical). Positive tests were confirmed by enzyme immunoassay (EIA), particle agglutination and line immunoassay.Results176 participants were enrolled; 59 (33.5%) were non-Malaysians and 104 (59.1%) were male. Smoking rates were high (81/104 males, 77.9%), most had cavitary disease (51/145, 64.8%), and 81/176 (46.0%) had haemoptysis. The median period of symptoms prior to treatment onset was 8 weeks. Diabetes was present in 12. People with diabetes or other comorbidities had less severe TB, suggesting different healthcare seeking behaviours in this group. All participants consented to HIV testing: three (1.7%) were positive according to Determine™ and EIA, but one of these tested negative on the point-of-care test available at the clinic (Advanced Quality™ Rapid Anti-HIV 1&2). The low number of positive tests and changes in locally-available test type meant that accurate estimates of sensitivity and specificity were not possible.ConclusionPatients had advanced disease at diagnosis, long diagnostic delays, low HIV co-infection rates, high smoking rates among males, and migrants may be over-represented. These findings provide important insights to guide local TB control efforts. Caution is required in using some point-of-care HIV tests, and ongoing quality control measures are of major importance
- …
