153 research outputs found

    W18O49 Nanowires as Ultraviolet Photodetector

    Get PDF
    Photodetectors in a configuration of field effect transistor were fabricated based on individual W18O49 nanowires. Evaluation of electrical transport behavior indicates that the W18O49 nanowires are n-type semiconductors. The photodetectors show high sensitivity, stability and reversibility to ultraviolet (UV) light. A high photoconductive gain of 104 was obtained, and the photoconductivity is up to 60 nS upon exposure to 312 nm UV light with an intensity of 1.6 mW/cm2. Absorption of oxygen on the surface of W18O49 nanowires has a significant influence on the dark conductivity, and the ambient gas can remarkably change the conductivity of W18O49 nanowire. The results imply that W18O49 nanowires will be promising candidates for fabricating UV photodetectors

    Volatile diterpene emission by two Mediterranean Cistaceae shrubs

    Get PDF
    Mediterranean vegetation emits a wide range of biogenic volatile organic compounds (BVOCs) among which isoprenoids present quantitatively the most important compound class. Here, we investigated the isoprenoid emission from two Mediterranean Cistaceae shrubs, Halimium halimifolium and Cistus ladanifer, under controlled and natural conditions, respectively. For the first time, diurnal emission patterns of the diterpene kaurene were detected in real-time by Proton-Transfer-Reaction-Timeof- Flight-Mass-Spectrometer. Kaurene emissions were strongly variable among H. halimifolium plants, ranging from 0.01 ± 0.003 to 0.06 ± 0.01 nmol m−2 s−1 in low and high emitting individuals, respectively. They were in the same order of magnitude as monoterpene (0.01 ± 0.01 to 0.11 ± 0.04 nmol m−2 s−1) and sesquiterpene (0.01 ± 0.01 to 0.52 nmol m−2 s−1) emission rates. Comparable range and variability was found for C. ladanifer under natural conditions. Labelling with 13C-pyruvate suggested that emitted kaurene was not derived from de novo biosynthesis. The high kaurene content in leaves, the weak relationship with ecophysiological parameters and the tendency of higher emissions with increasing temperatures in the field indicate an emission from storage pools. This study highlights significant emissions of kaurene from two Mediterranean shrub species, indicating that the release of diterpenes into the atmosphere should probably deserve more attention in the futureinfo:eu-repo/semantics/publishedVersio

    Synthesis of Well-Defined, Surfactant-Free Co<sub>3</sub>O<sub>4</sub> Nanoparticles:The Impact of Size and Manganese Promotion on Co<sub>3</sub>O<sub>4</sub> Reduction and Water Oxidation Activity

    Get PDF
    Abstract: A surfactant-free synthetic route has been developed to produce size-controlled, cube-like cobalt oxide nanoparticles of three different sizes in high yields. It was found that by using sodium nitrite as salt-mediating agent, near-quantitative yields could be obtained. The size of the nanoparticles could be altered from 11 to 22 nm by changing the cobalt concentration and reaction time. These surfactant-free nanoparticles form ideal substrates for facile deposition of further elements such as manganese. The effect of size of the cobalt oxide nanoparticles and the presence of manganese on the reducibility of cobalt oxide to metallic cobalt was investigated. Similarly, the effect of these parameters was investigated with a visible light promoted water oxidation system with cobalt oxide as catalyst, together with [Ru(bpy) 3] 2+ light harvester dye and an electron acceptor. Graphical Abstract: A novel surfactant-free synthetic route has been developed to produce size-controlled, cube shaped cobalt oxide nanoparticles in high yields. [Figure not available: see fulltext.]. </p

    Numerical and experimental analysis of a solid desiccant wheel

    No full text
    The rotary desiccant dehumidifier is an important component which can be used in air conditioning systems in order to reduce the electrical energy consumption and introduce renewable energy sources. In this study a one dimensional gas side resistance model is presented for predicting the performance of the desiccant wheel. Measurements from two real sorption wheels are used in order to validate the model. One wheel uses silica gel as desiccant material and the other lithium chloride. The simulation results are in good agreement with the experimental data. The model is used to compare the counter flow with the co-current wheel arrangements and to explain why the counter flow one is more efficient for air dehumidification

    Increasing diagnostic accuracy with a cell block preparation from thin-layer endometrial cytology: A feasibility study

    No full text
    Objective To investigate (1), the feasibility of preparing cell blocks by inverted filter sedimentation (IFS-CB) from endometrial samplings processed by the ThinPrep (R) (TP) technique (Cytyc Corp., Boxborough, Massachusetts, U.S.A), and (2) the possibility of increasing the diagnostic accuracy of TP endometrial cytology by examining the tissue architecture as an adjunctive method of detecting endometrial lesions. Study Design Three hundred one endometrial samplings were obtained, using the Endogyn endometrial device (Biogyn S. n.c., Italy), from perimenopausal and postmenopausal women. The endometrial samplings were collected in a vial with liquid fixative for the TP processing. One TP slide was prepared from each case. If adequate material remained in the vial after the TP slide preparation, it was processed for IFSCB preparation. Results IFS-CB preparation was processed in 263 cases (87%) with adequate material. Diagnoses on IFS-CB preparations obtained by endometrial sampling matched those of the hysterectomy specimens. The addition of IFS-CB histology to the cytologic diagnosis by TP increased the diagnostic accuracy of endometrial cytology to 96.3% and 100% for benign/atrophic endometrium and adenocarcinoma, respectively (p = 0.39 and 0.46). In hyperplasia without atypia and hyperplasia with atypia, the diagnostic accuracy increased significantly, to 96% and 95.3%, respectively (p = 0 03 7 and &lt; 0.001). Conclusion This study illustrates the merit of linking TP cytology with direct endometrial sampling, including small tissue fragments and material adequate for IFS-CB preparation. TP cytology provides an accurate cytologic diagnosis and the possibility of IFS-CB preparation, which could be a valuable diagnostic adjunct to TP cytology

    Evaluating the Technical and Environmental Capabilities of Geothermal Systems through Life Cycle Assessment

    No full text
    In these days of heightened environmental consciousness, many countries are shifting their focus towards renewable energy sources for both large-scale uses (such as power plants that generate electricity) and smaller-scale applications (e.g., building heating and cooling). In this light, it is not surprising that there is a growing interest in technologies that are reliant on non-conventional sources of power, such as geothermal energy. This study is making an effort to provide a comprehensive understanding of the possible advantages and multiple uses of geothermal energy systems, in the context of their technical and environmental evaluation through Life Cycle Assessment. A brief description of the analyzing methods and the tools used to study a particular system or application is presented. The geothermal technologies and the applications of specific systems are discussed in detail, providing their environmental advantages and their technical barriers as well. District and domestic heating systems cover a significant fraction of the geothermal energy potential. The majority of the discussed studies cover the electricity production as the most important application of geothermal energy. The overall conclusion of the current work is that geothermal energy is an extremely viable alternative that, combined with other renewable energy systems, may mitigate the negative effects of the existing energy mix worldwide
    corecore