108 research outputs found

    Dynamic stereo microscopy for studying particle sedimentation

    Get PDF
    We demonstrate a new method for measuring the sedimentation of a single colloidal bead by using a combination of optical tweezers and a stereo microscope based on a spatial light modulator. We use optical tweezers to raise a micron-sized silica bead to a fixed height and then release it to observe its 3D motion while it sediments under gravity. This experimental procedure provides two independent measurements of bead diameter and a measure of Faxén’s correction, where the motion changes due to presence of the boundary

    Periodic and Quasiperiodic Motion of an Elongated Microswimmer in Poiseuille Flow

    Full text link
    We study the dynamics of a prolate spheroidal microswimmer in Poiseuille flow for different flow geometries. When moving between two parallel plates or in a cylindrical microchannel, the swimmer performs either periodic swinging or periodic tumbling motion. Although the trajectories of spherical and elongated swimmers are qualitatively similar, the swinging and tumbling frequency strongly depends on the aspect ratio of the swimmer. In channels with reduced symmetry the swimmers perform quasiperiodic motion which we demonstrate explicitely for swimming in a channel with elliptical cross section

    Pressure is not a state function for generic active fluids

    Get PDF
    Pressure is the mechanical force per unit area that a confined system exerts on its container. In thermal equilibrium, it depends only on bulk properties (density, temperature, etc.) through an equation of state. Here we show that in a wide class of active systems the pressure depends on the precise interactions between the active particles and the confining walls. In general, therefore, active fluids have no equation of state, their mechanical pressures exhibit anomalous properties that defy the familiar thermodynamic reasoning that holds in equilibrium. The pressure remains a function of state, however, in some specific and well-studied active models that tacitly restrict the character of the particle-wall and/or particle-particle interactions.Comment: 8 pages + 9 SI pages, Nature Physics (2015

    Roadmap for Animate Matter

    Get PDF
    Humanity has long sought inspiration from nature to innovate materials and devices. As science advances, nature-inspired materials are becoming part of our lives. Animate materials, characterized by their activity, adaptability, and autonomy, emulate properties of living systems. While only biological materials fully embody these principles, artificial versions are advancing rapidly, promising transformative impacts in the circular economy, health and climate resilience within a generation. This roadmap presents authoritative perspectives on animate materials across different disciplines and scales, highlighting their interdisciplinary nature and potential applications in diverse fields including nanotechnology, robotics and the built environment. It underscores the need for concerted efforts to address shared challenges such as complexity management, scalability, evolvability, interdisciplinary collaboration, and ethical and environmental considerations. The framework defined by classifying materials based on their level of animacy can guide this emerging field to encourage cooperation and responsible development. By unravelling the mysteries of living matter and leveraging its principles, we can design materials and systems that will transform our world in a more sustainable manner

    Direct Measurements of Colloidal Solvophoresis under Imposed Solvent and Solute Gradients

    Full text link
    We describe a microfluidic system that enables direct visualization and measurement of diffusiophoretic migration of colloids in response to imposed solution gradients. Such measurements have proven difficult or impossible in macroscopic systems due to difficulties in establishing solution gradients that are sufficiently strong yet hydrodynamically stable. We validate the system with measurements of the concentration-dependent diffusiophoretic mobility of polystyrene colloids in NaCl gradients, confirming that diffusiophoretic migration velocities are proportional to gradients in the logarithm of electrolyte concentration. We then perform the first direct measurement of the concentration-dependent "solvophoretic" mobility of colloids in ethanol-water gradients, whose dependence on concentration and gradient strength was not known either theoretically or experimentally, but which our measurements reveal to be proportional to the gradient in the logarithm of ethanol mole fraction. Finally, we examine solvophoretic migration under a variety of qualitatively distinct chemical gradients, including solvents that are miscible or have finite solubility with water, an electrolyte for which diffusiophoresis proceeds down concentration gradients (unlike for most electrolytes), and a nonelectrolyte (sugar). Our technique enables the direct characterization of diffusiophoretic mobilities of various colloids under various solvent and solute gradients, analogous to the electrophoretic ζ-potential measurements that are routinely used to characterize suspensions. We anticipate that such measurements will provide the feedback required to test and develop theories for solvophoretic and diffusiophoretic migration and ultimately to the conceptual design and engineering of particles that respond in a desired way to their chemical environments

    Dimensionality matters in the collective behaviour of active emulsions

    Get PDF
    The behaviour of artificial microswimmers consisting of droplets of a mesogenic oil immersed in an aqueous surfactant solution depends qualitatively on the conditions of dimensional confinement; ranging from only transient aggregates in Hele-Shaw geometries to hexagonally packed, convection-driven clusters when sedimenting in an unconfined reservoir. We study the effects of varying the swimmer velocity, the height of the reservoir, and the buoyancy of the droplet swimmers. Two simple adjustments of the experimental setting lead to a suppression of clustering: either a decrease of the reservoir height below a certain value, or a match of the densities of droplets and surrounding phase, showing that the convection is the key mechanism for the clustering behaviour
    corecore