541 research outputs found
On the evaluation formula for Jack polynomials with prescribed symmetry
The Jack polynomials with prescribed symmetry are obtained from the
nonsymmetric polynomials via the operations of symmetrization,
antisymmetrization and normalization. After dividing out the corresponding
antisymmetric polynomial of smallest degree, a symmetric polynomial results. Of
interest in applications is the value of the latter polynomial when all the
variables are set equal. Dunkl has obtained this evaluation, making use of a
certain skew symmetric operator. We introduce a simpler operator for this
purpose, thereby obtaining a new derivation of the evaluation formula. An
expansion formula of a certain product in terms of Jack polynomials with
prescribed symmetry implied by the evaluation formula is used to derive a
generalization of a constant term identity due to Macdonald, Kadell and Kaneko.
Although we don't give the details in this work, the operator introduced here
can be defined for any reduced crystallographic root system, and used to
provide an evaluation formula for the corresponding Heckman-Opdam polynomials
with prescribed symmetry.Comment: 18 page
Extensions of tempered representations
Let be irreducible tempered representations of an affine Hecke
algebra H with positive parameters. We compute the higher extension groups
explicitly in terms of the representations of analytic
R-groups corresponding to and . The result has immediate
applications to the computation of the Euler-Poincar\'e pairing ,
the alternating sum of the dimensions of the Ext-groups. The resulting formula
for is equal to Arthur's formula for the elliptic pairing of
tempered characters in the setting of reductive p-adic groups. Our proof
applies equally well to affine Hecke algebras and to reductive groups over
non-archimedean local fields of arbitrary characteristic. This sheds new light
on the formula of Arthur and gives a new proof of Kazhdan's orthogonality
conjecture for the Euler-Poincar\'e pairing of admissible characters.Comment: This paper grew out of "A formula of Arthur and affine Hecke
algebras" (arXiv:1011.0679). In the second version some minor points were
improve
Kennisbasis Thema 1 ; Duurzame ontwikkeling van de groene en blauwe ruimte, jaarrapportage 2009
Kennisbasis thema 1 is in 2009 inhoudelijk en organisatorisch sterk vernieuwd. Die vernieuwing had een drieledig doel: een eendimensionale programmastructuur, een sterkere koppeling tussen wetenschappelijke vernieuwing en maatschappelijke herkenbaarheid, en een sterkere sturing op het ontwikkelen van de com- petentie van WUR om integrale visies op, evaluaties van en oplossingen voor complexe ruimtelijke problemen te kunnen ontwikkelen
On the elliptic nonabelian Fourier transform for unipotent representations of p-adic groups
In this paper, we consider the relation between two nonabelian Fourier
transforms. The first one is defined in terms of the Langlands-Kazhdan-Lusztig
parameters for unipotent elliptic representations of a split p-adic group and
the second is defined in terms of the pseudocoefficients of these
representations and Lusztig's nonabelian Fourier transform for characters of
finite groups of Lie type. We exemplify this relation in the case of the p-adic
group of type G_2.Comment: 17 pages; v2: several minor corrections, references added; v3:
corrections in the table with unipotent discrete series of G
Common Algebraic Structure for the Calogero-Sutherland Models
We investigate common algebraic structure for the rational and trigonometric
Calogero-Sutherland models by using the exchange-operator formalism. We show
that the set of the Jack polynomials whose arguments are Dunkl-type operators
provides an orthogonal basis for the rational case.Comment: 7 pages, LaTeX, no figures, some text and references added, minor
misprints correcte
A Computational Approach for Designing Tiger Corridors in India
Wildlife corridors are components of landscapes, which facilitate the
movement of organisms and processes between intact habitat areas, and thus
provide connectivity between the habitats within the landscapes. Corridors are
thus regions within a given landscape that connect fragmented habitat patches
within the landscape. The major concern of designing corridors as a
conservation strategy is primarily to counter, and to the extent possible,
mitigate the effects of habitat fragmentation and loss on the biodiversity of
the landscape, as well as support continuance of land use for essential local
and global economic activities in the region of reference. In this paper, we
use game theory, graph theory, membership functions and chain code algorithm to
model and design a set of wildlife corridors with tiger (Panthera tigris
tigris) as the focal species. We identify the parameters which would affect the
tiger population in a landscape complex and using the presence of these
identified parameters construct a graph using the habitat patches supporting
tiger presence in the landscape complex as vertices and the possible paths
between them as edges. The passage of tigers through the possible paths have
been modelled as an Assurance game, with tigers as an individual player. The
game is played recursively as the tiger passes through each grid considered for
the model. The iteration causes the tiger to choose the most suitable path
signifying the emergence of adaptability. As a formal explanation of the game,
we model this interaction of tiger with the parameters as deterministic finite
automata, whose transition function is obtained by the game payoff.Comment: 12 pages, 5 figures, 6 tables, NGCT conference 201
Quantum Inozemtsev model, quasi-exact solvability and N-fold supersymmetry
Inozemtsev models are classically integrable multi-particle dynamical systems
related to Calogero-Moser models. Because of the additional q^6 (rational
models) or sin^2(2q) (trigonometric models) potentials, their quantum versions
are not exactly solvable in contrast with Calogero-Moser models. We show that
quantum Inozemtsev models can be deformed to be a widest class of partly
solvable (or quasi-exactly solvable) multi-particle dynamical systems. They
posses N-fold supersymmetry which is equivalent to quasi-exact solvability. A
new method for identifying and solving quasi-exactly solvable systems, the
method of pre-superpotential, is presented.Comment: LaTeX2e 28 pages, no figure
Definitiestudie afwegingskader : naar een klimaatbestendig Nederland : definitiestudie Fase 1, kaders voor afweging
Onzekerheid over (omvang en tempo van) de gevolgen van klimaatverandering vormt een essentieel punt bij beslissingen over de ruimtelijke inrichting. De mate waarin en de snelheid waarmee veranderingen optreden zijn niet precies bekend. Een afwegingskader geeft de overheid en de planontwikkelaar instrumenten in handen om de risico’s, de kansen, de kosten en de baten van klimaatadaptatie op verschillende onderscheiden thema’s inzichtelijk te maken. Afwegen: hoe doe je dat. Daarvoor wordt in drie stappen een kader voor gegeven
Jack superpolynomials with negative fractional parameter: clustering properties and super-Virasoro ideals
The Jack polynomials P_\lambda^{(\alpha)} at \alpha=-(k+1)/(r-1) indexed by
certain (k,r,N)-admissible partitions are known to span an ideal I^{(k,r)}_N of
the space of symmetric functions in N variables. The ideal I^{(k,r)}_N is
invariant under the action of certain differential operators which include half
the Virasoro algebra. Moreover, the Jack polynomials in I^{(k,r)}_N admit
clusters of size at most k: they vanish when k+1 of their variables are
identified, and they do not vanish when only k of them are identified. We
generalize most of these properties to superspace using orthogonal
eigenfunctions of the supersymmetric extension of the trigonometric
Calogero-Moser-Sutherland model known as Jack superpolynomials. In particular,
we show that the Jack superpolynomials P_{\Lambda}^{(\alpha)} at
\alpha=-(k+1)/(r-1) indexed by certain (k,r,N)-admissible superpartitions span
an ideal {\mathcal I}^{(k,r)}_N of the space of symmetric polynomials in N
commuting variables and N anticommuting variables. We prove that the ideal
{\mathcal I}^{(k,r)}_N is stable with respect to the action of the
negative-half of the super-Virasoro algebra. In addition, we show that the Jack
superpolynomials in {\mathcal I}^{(k,r)}_N vanish when k+1 of their commuting
variables are equal, and conjecture that they do not vanish when only k of them
are identified. This allows us to conclude that the standard Jack polynomials
with prescribed symmetry should satisfy similar clustering properties. Finally,
we conjecture that the elements of {\mathcal I}^{(k,2)}_N provide a basis for
the subspace of symmetric superpolynomials in N variables that vanish when k+1
commuting variables are set equal to each other.Comment: 36 pages; the main changes in v2 are : 1) in the introduction, we
present exceptions to an often made statement concerning the clustering
property of the ordinary Jack polynomials for (k,r,N)-admissible partitions
(see Footnote 2); 2) Conjecture 14 is substantiated with the extensive
computational evidence presented in the new appendix C; 3) the various tests
supporting Conjecture 16 are reporte
A class of Calogero type reductions of free motion on a simple Lie group
The reductions of the free geodesic motion on a non-compact simple Lie group
G based on the symmetry given by left- and right
multiplications for a maximal compact subgroup are
investigated. At generic values of the momentum map this leads to (new) spin
Calogero type models. At some special values the `spin' degrees of freedom are
absent and we obtain the standard Sutherland model with three
independent coupling constants from SU(n+1,n) and from SU(n,n). This
generalization of the Olshanetsky-Perelomov derivation of the model with
two independent coupling constants from the geodesics on with
G=SU(n+1,n) relies on fixing the right-handed momentum to a non-zero character
of . The reductions considered permit further generalizations and work at
the quantized level, too, for non-compact as well as for compact G.Comment: shortened to 13 pages in v2 on request of Lett. Math. Phys. and
corrected some spelling error
- …
