541 research outputs found

    On the evaluation formula for Jack polynomials with prescribed symmetry

    Full text link
    The Jack polynomials with prescribed symmetry are obtained from the nonsymmetric polynomials via the operations of symmetrization, antisymmetrization and normalization. After dividing out the corresponding antisymmetric polynomial of smallest degree, a symmetric polynomial results. Of interest in applications is the value of the latter polynomial when all the variables are set equal. Dunkl has obtained this evaluation, making use of a certain skew symmetric operator. We introduce a simpler operator for this purpose, thereby obtaining a new derivation of the evaluation formula. An expansion formula of a certain product in terms of Jack polynomials with prescribed symmetry implied by the evaluation formula is used to derive a generalization of a constant term identity due to Macdonald, Kadell and Kaneko. Although we don't give the details in this work, the operator introduced here can be defined for any reduced crystallographic root system, and used to provide an evaluation formula for the corresponding Heckman-Opdam polynomials with prescribed symmetry.Comment: 18 page

    Extensions of tempered representations

    Get PDF
    Let π,π\pi, \pi' be irreducible tempered representations of an affine Hecke algebra H with positive parameters. We compute the higher extension groups ExtHn(π,π)Ext_H^n (\pi,\pi') explicitly in terms of the representations of analytic R-groups corresponding to π\pi and π\pi'. The result has immediate applications to the computation of the Euler-Poincar\'e pairing EP(π,π)EP(\pi,\pi'), the alternating sum of the dimensions of the Ext-groups. The resulting formula for EP(π,π)EP(\pi,\pi') is equal to Arthur's formula for the elliptic pairing of tempered characters in the setting of reductive p-adic groups. Our proof applies equally well to affine Hecke algebras and to reductive groups over non-archimedean local fields of arbitrary characteristic. This sheds new light on the formula of Arthur and gives a new proof of Kazhdan's orthogonality conjecture for the Euler-Poincar\'e pairing of admissible characters.Comment: This paper grew out of "A formula of Arthur and affine Hecke algebras" (arXiv:1011.0679). In the second version some minor points were improve

    Kennisbasis Thema 1 ; Duurzame ontwikkeling van de groene en blauwe ruimte, jaarrapportage 2009

    Get PDF
    Kennisbasis thema 1 is in 2009 inhoudelijk en organisatorisch sterk vernieuwd. Die vernieuwing had een drieledig doel: een eendimensionale programmastructuur, een sterkere koppeling tussen wetenschappelijke vernieuwing en maatschappelijke herkenbaarheid, en een sterkere sturing op het ontwikkelen van de com- petentie van WUR om integrale visies op, evaluaties van en oplossingen voor complexe ruimtelijke problemen te kunnen ontwikkelen

    On the elliptic nonabelian Fourier transform for unipotent representations of p-adic groups

    Full text link
    In this paper, we consider the relation between two nonabelian Fourier transforms. The first one is defined in terms of the Langlands-Kazhdan-Lusztig parameters for unipotent elliptic representations of a split p-adic group and the second is defined in terms of the pseudocoefficients of these representations and Lusztig's nonabelian Fourier transform for characters of finite groups of Lie type. We exemplify this relation in the case of the p-adic group of type G_2.Comment: 17 pages; v2: several minor corrections, references added; v3: corrections in the table with unipotent discrete series of G

    Common Algebraic Structure for the Calogero-Sutherland Models

    Full text link
    We investigate common algebraic structure for the rational and trigonometric Calogero-Sutherland models by using the exchange-operator formalism. We show that the set of the Jack polynomials whose arguments are Dunkl-type operators provides an orthogonal basis for the rational case.Comment: 7 pages, LaTeX, no figures, some text and references added, minor misprints correcte

    A Computational Approach for Designing Tiger Corridors in India

    Full text link
    Wildlife corridors are components of landscapes, which facilitate the movement of organisms and processes between intact habitat areas, and thus provide connectivity between the habitats within the landscapes. Corridors are thus regions within a given landscape that connect fragmented habitat patches within the landscape. The major concern of designing corridors as a conservation strategy is primarily to counter, and to the extent possible, mitigate the effects of habitat fragmentation and loss on the biodiversity of the landscape, as well as support continuance of land use for essential local and global economic activities in the region of reference. In this paper, we use game theory, graph theory, membership functions and chain code algorithm to model and design a set of wildlife corridors with tiger (Panthera tigris tigris) as the focal species. We identify the parameters which would affect the tiger population in a landscape complex and using the presence of these identified parameters construct a graph using the habitat patches supporting tiger presence in the landscape complex as vertices and the possible paths between them as edges. The passage of tigers through the possible paths have been modelled as an Assurance game, with tigers as an individual player. The game is played recursively as the tiger passes through each grid considered for the model. The iteration causes the tiger to choose the most suitable path signifying the emergence of adaptability. As a formal explanation of the game, we model this interaction of tiger with the parameters as deterministic finite automata, whose transition function is obtained by the game payoff.Comment: 12 pages, 5 figures, 6 tables, NGCT conference 201

    Quantum Inozemtsev model, quasi-exact solvability and N-fold supersymmetry

    Get PDF
    Inozemtsev models are classically integrable multi-particle dynamical systems related to Calogero-Moser models. Because of the additional q^6 (rational models) or sin^2(2q) (trigonometric models) potentials, their quantum versions are not exactly solvable in contrast with Calogero-Moser models. We show that quantum Inozemtsev models can be deformed to be a widest class of partly solvable (or quasi-exactly solvable) multi-particle dynamical systems. They posses N-fold supersymmetry which is equivalent to quasi-exact solvability. A new method for identifying and solving quasi-exactly solvable systems, the method of pre-superpotential, is presented.Comment: LaTeX2e 28 pages, no figure

    Definitiestudie afwegingskader : naar een klimaatbestendig Nederland : definitiestudie Fase 1, kaders voor afweging

    Get PDF
    Onzekerheid over (omvang en tempo van) de gevolgen van klimaatverandering vormt een essentieel punt bij beslissingen over de ruimtelijke inrichting. De mate waarin en de snelheid waarmee veranderingen optreden zijn niet precies bekend. Een afwegingskader geeft de overheid en de planontwikkelaar instrumenten in handen om de risico’s, de kansen, de kosten en de baten van klimaatadaptatie op verschillende onderscheiden thema’s inzichtelijk te maken. Afwegen: hoe doe je dat. Daarvoor wordt in drie stappen een kader voor gegeven

    Jack superpolynomials with negative fractional parameter: clustering properties and super-Virasoro ideals

    Full text link
    The Jack polynomials P_\lambda^{(\alpha)} at \alpha=-(k+1)/(r-1) indexed by certain (k,r,N)-admissible partitions are known to span an ideal I^{(k,r)}_N of the space of symmetric functions in N variables. The ideal I^{(k,r)}_N is invariant under the action of certain differential operators which include half the Virasoro algebra. Moreover, the Jack polynomials in I^{(k,r)}_N admit clusters of size at most k: they vanish when k+1 of their variables are identified, and they do not vanish when only k of them are identified. We generalize most of these properties to superspace using orthogonal eigenfunctions of the supersymmetric extension of the trigonometric Calogero-Moser-Sutherland model known as Jack superpolynomials. In particular, we show that the Jack superpolynomials P_{\Lambda}^{(\alpha)} at \alpha=-(k+1)/(r-1) indexed by certain (k,r,N)-admissible superpartitions span an ideal {\mathcal I}^{(k,r)}_N of the space of symmetric polynomials in N commuting variables and N anticommuting variables. We prove that the ideal {\mathcal I}^{(k,r)}_N is stable with respect to the action of the negative-half of the super-Virasoro algebra. In addition, we show that the Jack superpolynomials in {\mathcal I}^{(k,r)}_N vanish when k+1 of their commuting variables are equal, and conjecture that they do not vanish when only k of them are identified. This allows us to conclude that the standard Jack polynomials with prescribed symmetry should satisfy similar clustering properties. Finally, we conjecture that the elements of {\mathcal I}^{(k,2)}_N provide a basis for the subspace of symmetric superpolynomials in N variables that vanish when k+1 commuting variables are set equal to each other.Comment: 36 pages; the main changes in v2 are : 1) in the introduction, we present exceptions to an often made statement concerning the clustering property of the ordinary Jack polynomials for (k,r,N)-admissible partitions (see Footnote 2); 2) Conjecture 14 is substantiated with the extensive computational evidence presented in the new appendix C; 3) the various tests supporting Conjecture 16 are reporte

    A class of Calogero type reductions of free motion on a simple Lie group

    Full text link
    The reductions of the free geodesic motion on a non-compact simple Lie group G based on the G+×G+G_+ \times G_+ symmetry given by left- and right multiplications for a maximal compact subgroup G+GG_+ \subset G are investigated. At generic values of the momentum map this leads to (new) spin Calogero type models. At some special values the `spin' degrees of freedom are absent and we obtain the standard BCnBC_n Sutherland model with three independent coupling constants from SU(n+1,n) and from SU(n,n). This generalization of the Olshanetsky-Perelomov derivation of the BCnBC_n model with two independent coupling constants from the geodesics on G/G+G/G_+ with G=SU(n+1,n) relies on fixing the right-handed momentum to a non-zero character of G+G_+. The reductions considered permit further generalizations and work at the quantized level, too, for non-compact as well as for compact G.Comment: shortened to 13 pages in v2 on request of Lett. Math. Phys. and corrected some spelling error
    corecore