27 research outputs found
Replica symmetry breaking in the `small world' spin glass
We apply the cavity method to a spin glass model on a `small world' lattice,
a random bond graph super-imposed upon a 1-dimensional ferromagnetic ring. We
show the correspondence with a replicated transfer matrix approach, up to the
level of one step replica symmetry breaking (1RSB). Using the scheme developed
by M\'ezard & Parisi for the Bethe lattice, we evaluate observables for a model
with fixed connectivity and long range bonds. Our results agree with
numerical simulations significantly better than the replica symmetric (RS)
theory.Comment: 21 pages, 3 figure
Dynamic rewiring in small world networks
We investigate equilibrium properties of small world networks, in which both
connectivity and spin variables are dynamic, using replicated transfer matrices
within the replica symmetric approximation. Population dynamics techniques
allow us to examine order parameters of our system at total equilibrium,
probing both spin- and graph-statistics. Of these, interestingly, the degree
distribution is found to acquire a Poisson-like form (both within and outside
the ordered phase). Comparison with Glauber simulations confirms our results
satisfactorily.Comment: 21 pages, 5 figure
Spin models on random graphs with controlled topologies beyond degree constraints
We study Ising spin models on finitely connected random interaction graphs
which are drawn from an ensemble in which not only the degree distribution
can be chosen arbitrarily, but which allows for further fine-tuning of
the topology via preferential attachment of edges on the basis of an arbitrary
function Q(k,k') of the degrees of the vertices involved. We solve these models
using finite connectivity equilibrium replica theory, within the replica
symmetric ansatz. In our ensemble of graphs, phase diagrams of the spin system
are found to depend no longer only on the chosen degree distribution, but also
on the choice made for Q(k,k'). The increased ability to control interaction
topology in solvable models beyond prescribing only the degree distribution of
the interaction graph enables a more accurate modeling of real-world
interacting particle systems by spin systems on suitably defined random graphs.Comment: 21 pages, 4 figures, submitted to J Phys
Replicated Transfer Matrix Analysis of Ising Spin Models on `Small World' Lattices
We calculate equilibrium solutions for Ising spin models on `small world'
lattices, which are constructed by super-imposing random and sparse Poissonian
graphs with finite average connectivity c onto a one-dimensional ring. The
nearest neighbour bonds along the ring are ferromagnetic, whereas those
corresponding to the Poisonnian graph are allowed to be random. Our models thus
generally contain quenched connectivity and bond disorder. Within the replica
formalism, calculating the disorder-averaged free energy requires the
diagonalization of replicated transfer matrices. In addition to developing the
general replica symmetric theory, we derive phase diagrams and calculate
effective field distributions for two specific cases: that of uniform sparse
long-range bonds (i.e. `small world' magnets), and that of (+J/-J) random
sparse long-range bonds (i.e. `small world' spin-glasses).Comment: 22 pages, LaTeX, IOP macros, eps figure
Slowly evolving random graphs II: Adaptive geometry in finite-connectivity Hopfield models
We present an analytically solvable random graph model in which the
connections between the nodes can evolve in time, adiabatically slowly compared
to the dynamics of the nodes. We apply the formalism to finite connectivity
attractor neural network (Hopfield) models and we show that due to the
minimisation of the frustration effects the retrieval region of the phase
diagram can be significantly enlarged. Moreover, the fraction of misaligned
spins is reduced by this effect, and is smaller than in the infinite
connectivity regime. The main cause of this difference is found to be the
non-zero fraction of sites with vanishing local field when the connectivity is
finite.Comment: 17 pages, 8 figure
Diluted antiferromagnet in a ferromagnetic enviroment
The question of robustness of a network under random ``attacks'' is treated
in the framework of critical phenomena. The persistence of spontaneous
magnetization of a ferromagnetic system to the random inclusion of
antiferromagnetic interactions is investigated. After examing the static
properties of the quenched version (in respect to the random antiferromagnetic
interactions) of the model, the persistence of the magnetization is analysed
also in the annealed approximation, and the difference in the results are
discussed
Toward a quantitative approach to migrants integration
Migration phenomena and all the related issues, like integration of different
social groups, are intrinsically complex problems since they strongly depend on
several competitive mechanisms as economic factors, cultural differences and
many others. By identifying a few essential assumptions, and using the
statistical mechanics of complex systems, we propose a novel quantitative
approach that provides a minimal theory for those phenomena. We show that the
competitive interactions in decision making among a population of host
citizens and immigrants, a bi-partite spin-glass, give rise to a "social
consciousness" inside the host community in the sense of the associative memory
of neural networks. The theory leads to a natural quantitative definition of
migrant's "integration" inside the community. From the technical point of view
this minimal picture assumes, as control parameters, only general notions like
strength of the random interactions, the ratio among the two party sizes and
the cultural influence. Few steps forward, toward more refined models, which
include some structure on the random interaction topology (as dilution to avoid
the plain mean field approach) and correlations of experiences felt among the
two parties (biasing the distribution of the coupling) are discussed at the
end, where we show the robustness of our approach
Networking - A Statistical Physics Perspective
Efficient networking has a substantial economic and societal impact in a
broad range of areas including transportation systems, wired and wireless
communications and a range of Internet applications. As transportation and
communication networks become increasingly more complex, the ever increasing
demand for congestion control, higher traffic capacity, quality of service,
robustness and reduced energy consumption require new tools and methods to meet
these conflicting requirements. The new methodology should serve for gaining
better understanding of the properties of networking systems at the macroscopic
level, as well as for the development of new principled optimization and
management algorithms at the microscopic level. Methods of statistical physics
seem best placed to provide new approaches as they have been developed
specifically to deal with non-linear large scale systems. This paper aims at
presenting an overview of tools and methods that have been developed within the
statistical physics community and that can be readily applied to address the
emerging problems in networking. These include diffusion processes, methods
from disordered systems and polymer physics, probabilistic inference, which
have direct relevance to network routing, file and frequency distribution, the
exploration of network structures and vulnerability, and various other
practical networking applications.Comment: (Review article) 71 pages, 14 figure
On the phylogeny of the genus Acomys (Mammalia: Rodentia)
Volume: 58Start Page: 240End Page: 24