114 research outputs found

    Parasitic small-moment-antiferromagnetism and non-linear coupling of hidden order and antiferromagnetism in URu2Si2 observed by Larmor diffraction

    Get PDF
    We report simultaneous measurements of the distribution of lattice constants and the antiferromagnetic moment in high-purity URu2Si2, using both Larmor and conventional neutron diffraction, as a function of temperature and pressure up to 18 kbar. We establish that the tiny moment in the hidden order (HO) state is purely parasitic and quantitatively originates from the distribution of lattice constants. Moreover, the HO and large-moment antiferromagnetism (LMAF) at high pressure are separated by a line of first-order phase transitions, which ends in a bicritical point. Thus the HO and LMAF are coupled non-linearly and must have different symmetry, as expected of the HO being, e.g., incommensurate orbital currents, helicity order, or multipolar order.Comment: 4 pages, 4 figure

    Bose-Einstein condensation and entanglement in magnetic systems

    Full text link
    We present a study of magnetic field induced quantum phase transitions in insulating systems. A generalized scaling theory is used to obtain the temperature dependence of several physical quantities along the quantum critical trajectory (H=HCH=H_{C}, T→0T\to0) where HH is a longitudinal external magnetic field and HCH_{C} the critical value at which the transition occurs. We consider transitions from a spin liquid at a critical field HC1H_{C1} and from a fully polarized paramagnet, at HC2H_{C2}, into phases with long range order in the transverse components. The transitions at HC1H_{C1} and HC2H_{C2} can be viewed as Bose-Einstein condensations of magnons which however belong to different universality classes since they have different values of the dynamic critical exponent zz. Finally, we use that the magnetic susceptibility is an entanglement witness to discuss how this type of correlation sets in as the system approaches the quantum critical point along the critical trajectory, H=HC2H=H_{C2}, T→0T\to0.Comment: 7 pages, 1 Table; accepted version; changes in text and new reference

    High pressure study of BaFe2As2 - role of hydrostaticity and uniaxial stress

    Full text link
    We investigate the evolution of the electrical resistivity of BaFe2As2 single crystals with pressure. The samples used were from the same batch grown from self flux and showed properties that were highly reproducible. Samples were pressurised using three different pressure media: pentane-isopentane (in a piston cylinder cell), Daphne oil (in an alumina anvil cell) and steatite (in a Bridgman cell). Each pressure medium has its own intrinsic level of hydrostaticity, which dramatically affects the phase diagram. An increasing uniaxial pressure component in this system quickly reduces spin density wave order and favours the appearance of superconductivity, similar to what is seen in SrFe2As2.Comment: 11 page

    Role of commensurate and incommensurate low-energy excitations in the paramagnetic to hidden-order transition of URu2_2Si2_2

    Get PDF
    We report low-energy inelastic neutron scattering data of the paramagnetic (PM) to hidden-order (HO) phase transition at T0=17.5 KT_0=17.5\,{\rm K} in URu2_2Si2_2. While confirming previous results for the HO and PM phases, our data reveal a pronounced wavevector dependence of low-energy excitations across the phase transition. To analyze the energy scans we employ a damped harmonic oscillator model containing a fit parameter 1/Γ1/\Gamma which is expected to diverge at a second-order phase transition. Counter to expectations the excitations at Q⃗1=(1.44,0,0)\vec{Q}_1=(1.44,0,0) show an abrupt step-like suppression of 1/Γ1/\Gamma below T0T_0, whereas excitations at Q⃗0=(1,0,0)\vec{Q}_0=(1,0,0), associated with large-moment antiferromagnetism (LMAF) under pressure, show an enhancement and a pronounced peak of 1/Γ1/\Gamma at T0T_0. Therefore, at the critical HO temperature T0T_0, LMAF fluctuations become nearly critical as well. This is the behavior expected of a super-vector order parameter with nearly degenerate components for the HO and LMAF leading to nearly isotropic fluctuations in the combined order-parameter space.Comment: 6 pages; v3 accepted journal version; minor modifications compared to v

    Unconventional resistivity at the border of metallic antiferromagnetism in NiS2

    Get PDF
    We report low-temperature and high-pressure measurements of the electrical resistivity \rho(T) of the antiferromagnetic compound NiS_2 in its high-pressure metallic state. The form of \rho(T) suggests that metallic antiferromagnetism in NiS_2 is quenched at a critical pressure p_c=76+-5 kbar. Near p_c the temperature variation of \rho(T) is similar to that observed in NiS_{2-x}Se_x near the critical composition x=1 where the Neel temperature vanishes at ambient pressure. In both cases \rho(T) varies approximately as T^{1.5} over a wide range below 100 K. However, on closer analysis the resistivity exponent in NiS_2 exhibits an undulating variation with temperature not seen in NiSSe (x=1). This difference in behaviour may be due to the effects of spin-fluctuation scattering of charge carriers on cold and hot spots of the Fermi surface in the presence of quenched disorder, which is higher in NiSSe than in stoichiometric NiS_2.Comment: 7 page

    Topological Hall effect in the A-phase of MnSi

    Get PDF
    Recent small angle neutron scattering suggests, that the spin structure in the A-phase of MnSi is a so-called triple-QQ state, i.e., a superposition of three helices under 120 degrees. Model calculations suggest that this structure in fact is a lattice of so-called skyrmions, i.e., a lattice of topologically stable knots in the spin structure. We report a distinct additional contribution to the Hall effect in the temperature and magnetic field range of the proposed skyrmion lattice, where such a contribution is neither seen nor expected for a normal helical state. Our Hall effect measurements constitute a direct observation of a topologically quantized Berry phase that identifies the spin structure seen in neutron scattering as the proposed skyrmion lattice

    Neutron Halo Isomers in Stable Nuclei and their Possible Application for the Production of Low Energy, Pulsed, Polarized Neutron Beams of High Intensity and High Brilliance

    Full text link
    We propose to search for neutron halo isomers populated via γ\gamma-capture in stable nuclei with mass numbers of about A=140-180 or A=40-60, where the 4s1/24s_{1/2} or 3s1/23s_{1/2} neutron shell model state reaches zero binding energy. These halo nuclei can be produced for the first time with new γ\gamma-beams of high intensity and small band width (≤\le 0.1%) achievable via Compton back-scattering off brilliant electron beams thus offering a promising perspective to selectively populate these isomers with small separation energies of 1 eV to a few keV. Similar to single-neutron halo states for very light, extremely neutron-rich, radioactive nuclei \cite{hansen95,tanihata96,aumann00}, the low neutron separation energy and short-range nuclear force allows the neutron to tunnel far out into free space much beyond the nuclear core radius. This results in prolonged half lives of the isomers for the γ\gamma-decay back to the ground state in the 100 ps-μ\mus range. Similar to the treatment of photodisintegration of the deuteron, the neutron release from the neutron halo isomer via a second, low-energy, intense photon beam has a known much larger cross section with a typical energy threshold behavior. In the second step, the neutrons can be released as a low-energy, pulsed, polarized neutron beam of high intensity and high brilliance, possibly being much superior to presently existing beams from reactors or spallation neutron sources.Comment: accepted for publication in Applied Physics

    On the Hidden Order in URu2_{2}Si2_{2} --- Antiferro Hexadecapole Order and its Consequences

    Full text link
    An antiferro ordering of an electric hexadecapole moment is discussed as a promising candidate for the long standing mystery of the hidden order phase in URu2_{2}Si2_{2}. Based on localized ff-electron picture, we discuss the rationale of the selected multipole and the consequences of the antiferro hexadecapole order of xy(x2−y2)xy(x^{2}-y^{2}) symmetry. The mean-field solutions and the collective excitations from them explain reasonably significant experimental observations: the strong anisotropy in the magnetic susceptibility, characteristic behavior of pressure versus magnetic field or temperature phase diagrams, disappearance of inelastic neutron-scattering intensity out of the hidden order phase, and insensitiveness of the NQR frequency at Ru-sites upon ordering. A consistency with the strong anisotropy in the magnetic responses excludes all the multipoles in two-dimensional representations, such as (Oyz,Ozx)(O_{yz},O_{zx}). The expected azimuthal angle dependences of the resonant X-ray scattering amplitude are given. The (x2−y2)(x^{2}-y^{2})-type antiferro quadrupole should be induced by an in-plane magnetic field along [110][110], which is reflected in the thermal expansion and the elastic constant of the transverse (c11−c12)/2(c_{11}-c_{12})/2 mode. The (x2−y2)(x^{2}-y^{2})-type [(xy)(xy)-type] antiferro quadrupole is also induced by applying the uniaxial stress along [110][110] direction [[100][100] direction]. A detection of these induced antiferro quadrupoles under the in-plane magnetic field or the uniaxial stress using the resonant X-ray scattering provides a direct redundant test for the proposed order parameter.Comment: 10 pages, 10 figures, 5 table

    Frustration and the Kondo effect in heavy fermion materials

    Full text link
    The observation of a separation between the antiferromagnetic phase boundary and the small-large Fermi surface transition in recent experiments has led to the proposal that frustration is an important additional tuning parameter in the Kondo lattice model of heavy fermion materials. The introduction of a Kondo (K) and a frustration (Q) axis into the phase diagram permits us to discuss the physics of heavy fermion materials in a broader perspective. The current experimental situation is analysed in the context of this combined "QK" phase diagram. We discuss various theoretical models for the frustrated Kondo lattice, using general arguments to characterize the nature of the ff-electron localization transition that occurs between the spin liquid and heavy Fermi liquid ground-states. We concentrate in particular on the Shastry--Sutherland Kondo lattice model, for which we establish the qualitative phase diagram using strong coupling arguments and the large-NN expansion. The paper closes with some brief remarks on promising future theoretical directions.Comment: To appear in a special issue of JLT
    • …
    corecore