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Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching, Germany
6Institut für Theoretische Physik, Technische Universität Dresden, 01062 Dresden, Germany

7Van der Waals-Zeeman Institute, University of Amsterdam, 1018XE Amsterdam, The Netherlands
8Kamerlingh Onnes Laboratory, Leiden University, 2300RA Leiden, The Netherlands

We report low-energy inelastic neutron scattering data of the paramagnetic (PM) to hidden-order
(HO) phase transition at T0 = 17.5 K in URu2Si2. While confirming previous results for the HO
and PM phases, our data reveal a pronounced wavevector dependence of low-energy excitations
across the phase transition. To analyze the energy scans we employ a damped harmonic oscil-
lator model containing a fit parameter 1/Γ which is expected to diverge at a second-order phase

transition. Counter to expectations the excitations at ~Q1 ≈ (1.4, 0, 0) show an abrupt step-like

suppression of 1/Γ below T0, whereas excitations at ~Q0 = (1, 0, 0), associated with large-moment
antiferromagnetism (LMAF) under pressure, show an enhancement and a pronounced peak of 1/Γ
at T0. Therefore, at the critical HO temperature T0, LMAF fluctuations become nearly critical
as well. This is the behavior expected of a “super-vector” order parameter with nearly degener-
ate components for the HO and LMAF leading to nearly isotropic fluctuations in the combined
order-parameter space.

PACS numbers: 61.05.F-,62.50.-p,71.27.+a,75.30.Kz
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I. INTRODUCTION

For nearly thirty years one of the most prominent un-
explained properties of f -electron materials has been the
phase transition in URu2Si2 at T0 ≈ 17.5 K into a state
refered to as ’hidden order’ (HO)1–4 as the nature of the
order parameter remains unknown. The discovery of the
HO was soon followed by the observation of a small an-
tiferromagnetic moment (SMAF), ms ≈ 0.01 − 0.04 µB

per U atom5, then believed to be an intrinsic property
of the HO. The observation of a large-moment antiferro-
magnetic phase (LMAF) with ms ≈ 0.4 µB

6 under pres-
sure consequently prompted intense theoretical efforts to
connect the LMAF with the SMAF and the HO. How-
ever, µSR, NMR, Larmor and magnetic neutron diffrac-
tion experiments suggested that the apparent SMAF is
a result of the presence of LMAF in a small sample vol-
ume fraction.7–10. Studies of the pressure–temperature
phase diagram of URu2Si2 consistently establish the ex-
istence of a bicritical point, which implies that HO and
LMAF break different symmetries9,11–14. To explain
these properties, exotic scenarios of the HO have been
proposed, such as incommensurate orbital currents15, he-
licity order16, multipolar order17–20, order due to dy-
namic symmetry breaking21, so-called hastatic order22,
or spin-orbit density waves23,24. Indications of breaking
of the 4-fold tetragonal in-plane symmetry at T0 have
motivated the consideration of a spin-nematic state25–28.

Inelastic neutron scattering has been essential for gain-
ing microscopic insight into the nature of the HO (see
e.g.29,30). The existence of commensurate and incom-

mensurate excitations in the HO at ~Q0 = (1, 0, 0) and
~Q1 ≈ (1.4, 0, 0), respectively, had been known for quite

a while5. The incommensurate excitations at ~Q1 are re-
ported to exist in the HO and LMAF phase, with gaps of
approximately 4 meV and 8 meV, respectively31,32, and
with a reduced gap29,33 or even gapless nature34 in the
PM phase. The closing of the gap has been quantita-
tively linked to the specific heat jump at T0

34. In con-

trast, the commensurate excitations at ~Q0 have previ-
ously only been observed in the HO phase (gap approx-
imately 2 meV) and no critical behavior at T0 has been
reported30,32. Therefore, the link between excitations at
~Q0 and ~Q1 and the HO has remained unclear.

In this paper we present compelling evidence that the

commensurate fluctuations at ~Q0 do not disappear right
at T0, but evolve in a way across the PM–HO transi-
tion, which allows us to interpret them as precursors of
LMAF order. Further, the LMAF and HO fluctuations

are clearly interrelated and ~QAF = (0, 0, 1) is the most
likely HO wave vector, while the incommensurate fluctu-

ations at ~Q1 are mere bystanders. This is the result of
a direct and quantitative comparison of the excitations

at ~Q0 and ~Q1, which have been studied in a single neu-
tron scattering experiment. Detailed temperature scans
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across the HO–PM phase transition at low energies turn
out to be an ideal way to visualize in the raw data the
existence of a clear qualitative difference in the behav-

ior at ~Q0 and ~Q1. At the incommensurate ~Q1 position
the gap is filled abruptly at T0 upon heating, i.e., the
low-energy excitations are enhanced in a step-like fash-
ion upon entering the PM phase. In contrast, scans at

the commensurate ~Q0 position show that the low-energy
excitations are enhanced across a considerable tempera-
ture range and peak at T0.

A detailed analysis of energy scans confirms that the

fluctuations at ~Q0, which can be understood as precur-
sors of LMAF order become almost critical at the PM–
HO transition, in addition to the expected critical fluctu-
ations of the hitherto unidentified HO parameter. This
is not expected in a standard scenario of competing or-
der parameters for HO and LMAF, which break differ-
ent symmetries. However, it is consistent with nearly
isotropic fluctuations of a super-vector order parameter
as described in the discussion, which consists of compo-
nents for both HO and LMAF. Isotropy in this order-
parameter space would imply an emergent symmetry be-
tween both orders, which may be tested experimentally.

II. EXPERIMENTAL

The 2g single crystal studied was grown by means of an
optical floating-zone technique at the Amsterdam/Leiden
Center. High sample quality was confirmed via X-ray
diffraction and detailed electron probe microanalysis.
The mosaic spread is less than 1◦. Samples prepared
from this ingot showed good resistance ratios (20 for the
c axis and ≈ 10 for the a axis) and a high superconduct-
ing Tc ≈ 1.5 K. The magnetization of the large single
crystal agreed very well with data shown in Ref. 35 and
confirmed the absence of ferromagnetic inclusions. Most
importantly, in our neutron scattering measurements we
found an antiferromagnetic moment ms ≈ 0.012 µB per
U atom9, which matches the smallest moment reported
so far36.

Inelastic neutron scattering measurements were car-
ried out at the cold triple-axis spectrometer PANDA at
FRMII. The sample was mounted on a Cd-shielded Cu
holder and oriented with (h0l) as the horizontal scatter-
ing plane. PANDA was used in W-configuration with
vertically and horizontally focusing monochromator and
analyser and no collimation. The final wavevector was
kept fixed at 1.55 Å−1. Higher-order harmonics were
removed from the scattered beam by a liquid-nitrogen
cooled Be filter and monitor correction for higher order
neutrons was included. The temperature evolution of
the low-energy excitations of URu2Si2 at commensurate
~Q0 and incommensurate ~Q1 was studied by low-energy
scans at different temperatures. Most importantly, de-
tailed temperature scans at E = 0.5 meV were carried
out at each position.

FIG. 1: Low-energy excitations. At low temperature T in
the hidden order phase excitations are gapped. Excitations
are seen (a) above 2 meV at the commensurate (1, 0, 0) posi-
tion and (b) above 4 meV at the incommensurate (1.44, 0, 0)
position. The inset shows a h scan at 4.5 meV at 3 K. Both
gaps close at the transition to paramagnetism (T0 = 17.5 K).
(Counting time approximately 2 min. Solid lines represent
damped-harmonic oscillator fits described in the text.)

A. Energy scans

Figure 1 shows typical energy scans for ~Q0 and ~Q1. At
both positions scattering by considerably damped exci-
tations is found for temperatures above T0. At T0 gaps
are opening up, and with further decreasing T the inten-
sities of the excitations increase while the gaps widen.
The spectrum is clearly gapped at low temperatures. At

3 K, low-energy excitations are detected at 2 meV at ~Q0

and just above 4 meV at ~Q1.

B. Temperature scans

While the spin fluctuations are truly critical neither at
~Q0 nor at ~Q1, we have observed significant differences

between the low-energy excitation spectra at ~Q0 and ~Q1

when approaching the onset of hidden order at T0. For
both wave vectors these differences are best visualized in
detailed temperature scans at E = 0.5 meV (Fig. 2).

At the incommensurate position, ~Q1, the gap opens
in a step-like fashion at T0, with the scattering inten-
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FIG. 2: Temperature dependence of the low-energy excita-
tions around the hidden-order to paramagnetic phase transi-
tion. At the incommensurate (1.44, 0, 0) wavevector the gap
is filled much more abruptly at T0 and the E = 0.5 meV exci-
tations do not show any additional enhancement. At the com-
mensurate (1, 0, 0) position the gap is filled across a consid-
erable temperature range around T0. Low-energy excitations
at E = 0.5 meV are strongly enhanced and peak precisely at
T0 illustrating the peaking of the damping, which is exclusive
to the (1, 0, 0) position.

sity being essentially constant above T0. In comparison
to related data reported by Wiebe et al.34 for an en-
ergy transfer of E = 0.25 meV, our scan at E = 0.5 meV
shows a much sharper decrease of scattering intensity just
below T0. This may be due to larger background contri-
butions at the smaller energy transfer studied by Wiebe
et al.. However, both data sets agree in that there is no
enhancement of the low-E excitations when approaching
T0 from above.

In strong contrast, at the commensurate position, ~Q0,
the intensity of the low-energy excitations increases be-
low about 24 K when approaching T0, peaking precisely
at T0. It then decreases in a broad temperature range
below T0, becoming fully suppressed below ∼ 11 K.

C. Analysis of energy scans

The low-energy scattering in Figure 1 consists of the
contribution from the dynamic structure factor S(~q,E)
and a background. A main ingredient of S(~q,E) is the
imaginary part χ′′(~q,E) of the dynamic susceptibility.
In previous studies of the commensurate excitations the
imaginary part of the dynamic susceptibility was either
modelled as a damped harmonic oscillator30,38 or, for
T > T0, in a quasielastic approximation30. Moreover, in
a different study, the incommensurate excitations were
analyzed below and above T0 with a Lorentzian model29.
In comparison, we consistently fit, for the first time, our

data at all temperatures at both ~Q0 and ~Q1 using a

FIG. 3: Temperature dependence of the resonance energies E0

of the undamped and Ed of the damped oscillator and D/2
with damping D. Vertical lines indicate T0 of the HO-PM
transition. The behavior at (a) the commensurate position
~Q0 and (b) the incommensurate position ~Q1 is qualitatively
similar. E0 is fairly constant and shows a small dip near T0,
while Ed is strongly suppressed near T0. D shows a signifi-
cant increase near T0. The excitations are weakly damped
at low temperatures and approximately critically damped
(E0 ≈ D/2) above T0. The increased errors at T > T0 re-
flect that E0 and D and in particular Ed become less well
defined near the critically damped regime.

damped harmonic oscillator function for χ′′(~q):

S(~q,E) =

(
1

1− e−E/kBT

)
χ′0(~q)E2

0D~qE

(E2 − E2
0)2 +D2

~qE
2

.

Here, χ′0(~q) is the real part of the static susceptibility,
D~q denotes damping, and E0 is the resonance energy of

the undamped oscillator.
(

1
1−e−E/kBT

)
= nE + 1 is the

detailed balance factor and contains the Bose-Einstein
distribution nE = 1

eE/kBT−1 . The detailed balance factor

describes the temperature dependence of the probability
for neutrons to scatter as a function of energy loss E. In
particular, it can be seen that the scattering probability
remains significant even if E is much larger than kBT .

The data in Figure 1 was fitted using a convolution of
S(~q,E) with the resolution ellipsoid, where we have as-

sumed a quadratic dispersion E0 = E0( ~Qi) + aih(Qih −
Qh)2 + aik(Qik − Qk)2 + ail(Qil − Ql)

2 near both ~Qi
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FIG. 4: Temperature dependence of (a) the static susceptibil-
ity χ0(~q) = χ(~q, ω = 0) and of (b) 1/Γ with Γ = E2

0/D. Ver-

tical lines indicate T0 of the HO–PM transition. (a) χ0( ~Q0)

drops while χ0( ~Q1) rises with increasing temperature. χ0( ~Q0)

and χ0( ~Q1) have similar magnitude near T0. To allow this
quantitative comparison of both signals χ0 values have been
normalised by the form factor of UO2

37. (b) 1/Γ( ~Q1) shows

an almost step-like increase near T0. 1/Γ( ~Q0) is larger than

1/Γ( ~Q1) in the whole studied temperature range and shows
a strong peak at T0. Γ would correspond to the quasielastic
linewidth in the strongly overdamped limit.

with i = 0, 1. We have set ~Q1 = (1.41, 0, 0) as this is
at the boundary of the body-centred tetragonal recipro-
cal lattice, on which the dispersion minimum seems to
be centred39. We infer dispersion parameters aih, aik
and ail from the results of Broholm et al.29. As the dis-
persion near ~Q1 in the l direction was not reported in
the literature, we have assumed a1l/a1h = a0l/a0h. We
have assumed χ′0 to have a Gaussian ~q dependence in the

immediate vicinity of both ~Qi with i = 0, 1. We have
obtained the strength of the dependence by taking the
~q dependence of the integrated excitation intensity ob-
tained by Broholm et al.29 at low temperatures as an
order of magnitude estimate. For our fits, the resolution
ellipsoid was determined in RESCAL40 with the Cooper-
Nathan method with values for the beam divergences de-
rived from the instrument geometry. Fits were obtained
by Monte Carlo integrations using Mfit440.

We find that the background, as determined in energy
scans at 20 and 3 K at (1.2 0 0), is constant in the E

range of our experiment and weakly T -dependent. The
background is thereby assumed to include the magnetic
continuum previously reported in Ref. 30. The fits shown
in Figure 1 are in excellent agreement with the data, thus
supporting the suitability of the model.

The temperature evolution of E0 and D as well as
the associated resonance energy of the damped oscilla-
tor, Ed =

√
E2

0 − (D/2)2, are shown in Figure 3. The
condition for critical damping is E0 = D/2, which implies

Ed = 0. The behavior of E0, D, and Ed at ~Q0 and ~Q1

is qualitatively similar. E0 is fairly constant with values

close to 2 meV at ~Q0 and close to 4 meV at ~Q1. In both
cases a small dip is seen near T0. D strongly increases
near T0 and the damping level changes from moderate
below T0 to critically damped above T0 in both cases.
Near T0, Ed is suppressed to zero within the error in
both cases.

When comparing our results at ~Q0 with the results of
previous studies by Mason et al.38 and Bourdarot et al.30

the values for E0 well below T0 are consistent with each
other and a qualitatively similar increase of D near T0 is
found in each study. However, our observation of only a
small dip of E0 near T0 is in contrast to the previously
reported strong suppression of E0 near T0 and to the re-
lated equally strong suppression of the resonance energy
in a magnetic excitation model33.

For ~Q1 comparison with other reports is more difficult,
as either a three-parameter Lorentzian5 or magnetic exci-
tation model33 was used. Our results for the temperature
dependencies of E0 and D are qualitatively similar to
the results found for the resonance energies and damping
parameters, respectively, of the previously used models.
However, the decrease of E0 near T0 in our analysis is
comparatively small.

The most striking difference between our study and
previous work concerns the T dependence of the reso-

nance energies at ~Q0 as compared to ~Q1 across T0. While
Ref. 33 concludes on qualitative differences, we find qual-

itative similarity between ~Q0 and ~Q1.

We attribute the discussed discrepancies between E0

and D values for ~Q0 and ~Q1 reported here and in the lit-
erature to the following effect: in the regime of stronger
damping the harmonic oscillator function only depends
on the combination Γ = E2

0/D except at higher E, where
the function is close to zero. Therefore, E0 and D be-
come less well defined as individual fit parameters in the
regime of stronger damping. However, Γ itself and the
static susceptibility χ0 are well-defined parameters at any
damping level and more appropriate for a comparison

of the excitations at ~Q0 and ~Q1. We stress that Γ can
only be interpreted as the quasielastic linewidth or re-
laxation rate of the magnetic excitations in the strongly
overdamped limit. Nevertheless, Γ is a meaningful quan-
tity at all damping regimes, as it is true for all levels of
damping that an increase in 1/Γ represents a change to a
more highly damped regime (as this depends on the ratio
of D and E0).
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Figure 4a shows that with increasing T the static sus-

ceptibility χ0 decreases at ~Q0 but increases at ~Q1. The

T dependence of χ0( ~Q0) is similar to that reported in
Ref. 30. A divergence as reported by Mason et al.38 is

not observed. A comparison of the behaviour of χ0( ~Q1)
with other studies is again more difficult due to the dif-
ferent models used in Refs. 5 and 33. Nevertheless, the T

dependence of χ0( ~Q1) is found to be qualitatively similar
to the amplitude reported in Ref. 5 and the static suscep-
tibility reported in Ref. 33, which are the corresponding
parameters of the respective models. To additionally al-

low for a quantitative comparison of the signals at ~Q0 and
~Q1 in this study, χ0 values have been normalised by the

form factor of UO2
37. χ0( ~Q0) has a similar magnitude

to χ0( ~Q1) near T0.
Figure 4b shows that the T dependence of 1/Γ, like

that of χ0, is also distinctly different at ~Q0 and ~Q1.
In general, at a continuous phase transition, 1/Γ of the
order-parameter response function is expected to diverge.

Experimentally, 1/Γ( ~Q0), although not diverging, dis-
plays a pronounced peak right at T0. This indicates
that the LMAF fluctuations become almost critical at the
PM–HO transition, in addition to the expected critical
fluctuations of the hitherto unidentified HO parameter.
(We note that tiny amounts of quenched disorder may

also limit 1/Γ( ~Q0) at T0.)

However, the behavior of 1/Γ( ~Q1) is very different.

With increasing T , 1/Γ( ~Q1) only shows a step-like evo-

lution across T0. Also, 1/Γ( ~Q1) < 1/Γ( ~Q0) in the whole
T range studied. A comparison with the raw data in
Figure 2 shows that 1/Γ captures the main difference be-
tween the T dependencies of the low-energy excitation

spectra at ~Q0 and ~Q1.

III. DISCUSSION

Our experimental results suggest an intimate relation
between the PM–HO phase transition and the commen-

surate excitations at ~Q0. The latter show enhanced
damping towards T0, much like the critical fluctuations
of a second-order magnetic phase transition. In marked

contrast, the incommensurate excitations at ~Q1 do not
show a peak of 1/Γ. Instead, Γ remains essentially con-
stant when T0 is approached from high temperatures.
The opening of the gap in these incommensurate excita-
tions may in turn be interpreted as a simple consequence
of the onset of the HO. This view is not incompatible
with the proposal34 that the incommensurate excitations

at ~Q1 are mainly responsible for the magnitude of the
specific-heat anomaly.

The commensurate fluctuations at ~Q0 – although being
peaked exactly at T0 – do not become critical, i.e., the
corresponding static susceptibility does not diverge. The

latter is only expected if the magnetic order with ~QAF =

(0, 0, 1), which is represented by a Bragg peak at ~Q0,

becomes static below T0. This would be the case in the
pressure-induced LMAF phase, but not in the HO phase.

What is then the role of the ~Q0 magnetic fluctuations?
It is instructive to discuss the interplay of hidden or-

der and magnetism using the order-parameter language.
If HO and magnetism would simply represent competing
order parameters ψHO and ψAF, with ordering wavevec-

tors ~QHO and ~QAF, respectively, an enhancement of the
HO would lead to a suppression of magnetism and vice
versa. In particular, it would be expected that magnetic
fluctuations are suppressed instead of enhanced when
approaching the HO transition. Moreover, one would
not expect that the HO couples to the magnetism in
a wavevector-selective manner: to lowest order the al-
lowed coupling in a Landau functional is of the form
|ψHO|2|ψAF|2, which does not require any relationship

between ~QHO and ~QAF. Therefore, a standard sce-
nario of competing orders with differing symmetries, in-
ferred from the parasitic nature of the small-moment
antiferromagnetism and the temperature-pressure phase
diagram9, does not easily account for our data.

This prompts us to invoke a closer relationship be-
tween HO and LMAF. Specific proposals along these
lines were recently made in Refs. 18,41 for hexadecap-
olar order and in Ref. 22 for hastatic order. The cen-
tral idea for such a closer relationship, common to these
different microscopic calculations18,22, is that ψHO and
ψAF may be treated as components of a common super-
vector order parameter. This implies that the system is
in the vicinity of a point with higher symmetry, where
HO and magnetism are degenerate. Approaching the or-
dering transition at T0 in turn will lead to a concomi-
tant enhancement of both HO and magnetic fluctuations,
corresponding to nearly isotropic fluctuations in order-
parameter space, until – very close to the PM–HO tran-
sition – the magnetic fluctuations are cut-off, consistent
with our data. In the simplest case, this scenario sug-

gests ~QHO = ~QAF = (0, 0, 1). Therefore it will be cru-
cial to search for these proposed order parameters18,22

at wavevector (0, 0, 1) in the HO phase as well as their
fluctuations for T > T0.

IV. CONCLUSIONS

We have shown a strong link between LMAF-related

commensurate magnetic fluctuations at ~Q0 and the PM–
HO transition in URu2Si2. Temperature scans of the

low-energy excitations at the commensurate ~Q0 and the

incommensurate ~Q1 positions show qualitatively differ-
ent behavior across the transition, with the former being
strongly enhanced towards the PM–HO transition tem-
perature T0. An analysis of energy scans in terms of
damped harmonic oscillator functions characterized by
the resonance energy E0 and damping D shows that the
difference in the temperature scans originates from the

temperature dependences of 1/Γ = D/E2
0 at ~Q0 and ~Q1.
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Our results put strong constraints on theoretical mod-
els for the HO state; they point to a common, nearly
isotropic, order-parameter space involving both HO and
LMAF order parameters22,41.

As a consequence we predict for high-pressure neutron
scattering experiments of the low-energy excitations near

the PM–LMAF transition, that the fluctuations at ~Q0

become stronger for increasing pressure at T0(p), with a
clear trend to a truly critical divergence at TN beyond
the bicritical point9,11–14. At the same time, the intensity

at ~Q1 is predicted to remain non-critical, step-like, at all
p and T .

V. NOTE ADDED IN PROOF

We note two recent Raman spectroscopy reports (Refs.
42 and 43) on the observation of a sharp resonance A2g

mode at very similar energies as the ~Q0 excitations seen
in neutron scattering. These works support our super-
vector order parameter interpretation based on Refs. 18
and 41.
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