20,438 research outputs found
Strong Optomechanical Squeezing of Light
We create squeezed light by exploiting the quantum nature of the mechanical
interaction between laser light and a membrane mechanical resonator embedded in
an optical cavity. The radiation pressure shot noise (fluctuating optical force
from quantum laser amplitude noise) induces resonator motion well above that of
thermally driven motion. This motion imprints a phase shift on the laser light,
hence correlating the amplitude and phase noise, a consequence of which is
optical squeezing. We experimentally demonstrate strong and continuous
optomechanical squeezing of 1.7 +/- 0.2 dB below the shot noise level. The peak
level of squeezing measured near the mechanical resonance is well described by
a model whose parameters are independently calibrated and that includes thermal
motion of the membrane with no other classical noise sources.Comment: 12 pages, 8 figure
The Kelvin Formula for Thermopower
Thermoelectrics are important in physics, engineering, and material science
due to their useful applications and inherent theoretical difficulty,
especially in strongly correlated materials. Here we reexamine the framework
for calculating the thermopower, inspired by ideas of Lord Kelvin from 1854. We
find an approximate but concise expression, which we term as the Kelvin formula
for the the Seebeck coefficient. According to this formula, the Seebeck
coefficient is given as the particle number derivative of the entropy
, at constant volume and temperature ,
. This formula is shown to be competitive compared to other
approximations in various contexts including strongly correlated systems. We
finally connect to a recent thermopower calculation for non-Abelian fractional
quantum Hall states, where we point out that the Kelvin formula is exact.Comment: 6 pages, 2 figure
Measurement and Compensation of Horizontal Crabbing at the Cornell Electron Storage Ring Test Accelerator
In storage rings, horizontal dispersion in the rf cavities introduces
horizontal-longitudinal (xz) coupling, contributing to beam tilt in the xz
plane. This coupling can be characterized by a "crabbing" dispersion term
{\zeta}a that appears in the normal mode decomposition of the 1-turn transfer
matrix. {\zeta}a is proportional to the rf cavity voltage and the horizontal
dispersion in the cavity. We report experiments at the Cornell Electron Storage
Ring Test Accelerator (CesrTA) where xz coupling was explored using three
lattices with distinct crabbing properties. We characterize the xz coupling for
each case by measuring the horizontal projection of the beam with a beam size
monitor. The three lattice configurations correspond to a) 16 mrad xz tilt at
the beam size monitor source point, b) compensation of the {\zeta}a introduced
by one of two pairs of RF cavities with the second, and c) zero dispersion in
RF cavities, eliminating {\zeta}a entirely. Additionally, intrabeam scattering
(IBS) is evident in our measurements of beam size vs. rf voltage.Comment: 5 figures, 10 page
Finite temperature properties of the triangular lattice t-J model, applications to NaCoO
We present a finite temperature () study of the t-J model on the
two-dimensional triangular lattice for the negative hopping , as relevant
for the electron-doped NaCoO (NCO). To understand several aspects of
this system, we study the -dependent chemical potential, specific heat,
magnetic susceptibility, and the dynamic Hall-coefficient across the entire
doping range. We show systematically, how this simplest model for strongly
correlated electrons describes a crossover as function of doping () from a
Pauli-like weakly spin-correlated metal close to the band-limit (density )
to the Curie-Weiss metallic phase () with pronounced
anti-ferromagnetic (AFM) correlations at low temperatures and Curie-Weiss type
behavior in the high-temperature regime. Upon further reduction of the doping,
a new energy scale, dominated by spin-interactions () emerges (apparent both
in specific heat and susceptibility) and we identify an effective interaction
, valid across the entire doping range. This is distinct from
Anderson's formula, as we choose here , hence the opposite sign of the
usual Nagaoka-ferromagnetic situation. This expression includes the subtle
effect of weak kinetic AFM - as encountered in the infinitely correlated
situation (). By explicit computation of the Kubo-formulae, we
address the question of practical relevance of the high-frequency expression
for the Hall coefficient . We hope to clarify some open questions
concerning the applicability of the t-J model to real experimental situations
through this study
Improving broadband displacement detection with quantum correlations
Interferometers enable ultrasensitive measurement in a wide array of
applications from gravitational wave searches to force microscopes. The role of
quantum mechanics in the metrological limits of interferometers has a rich
history, and a large number of techniques to surpass conventional limits have
been proposed. In a typical measurement configuration, the tradeoff between the
probe's shot noise (imprecision) and its quantum backaction results in what is
known as the standard quantum limit (SQL). In this work we investigate how
quantum correlations accessed by modifying the readout of the interferometer
can access physics beyond the SQL and improve displacement sensitivity.
Specifically, we use an optical cavity to probe the motion of a silicon nitride
membrane off mechanical resonance, as one would do in a broadband displacement
or force measurement, and observe sensitivity better than the SQL dictates for
our quantum efficiency. Our measurement illustrates the core idea behind a
technique known as \textit{variational readout}, in which the optical readout
quadrature is changed as a function of frequency to improve broadband
displacement detection. And more generally our result is a salient example of
how correlations can aid sensing in the presence of backaction.Comment: 17 pages, 5 figure
Trehalose Is A Chemical Attractant In The Establishment Of Coral Symbiosis
Coral reefs have evolved with a crucial symbiosis between photosynthetic dinoflagellates (genus Symbiodinium) and their cnidarian hosts (Scleractinians). Most coral larvae take up Symbiodinium from their environment; however, the earliest steps in this process have been elusive. Here we demonstrate that the disaccharide trehalose may be an important signal from the symbiont to potential larval hosts. Symbiodinium freshly isolated from Fungia scutaria corals constantly released trehalose (but not sucrose, maltose or glucose) into seawater, and released glycerol only in the presence of coral tissue. Spawning Fungia adults increased symbiont number in their immediate area by excreting pellets of Symbiodinium, and when these naturally discharged Symbiodinium were cultured, they also released trehalose. In Y-maze experiments, coral larvae demonstrated chemoattractant and feeding behaviors only towards a chamber with trehalose or glycerol. Concomitantly, coral larvae and adult tissue, but not symbionts, had significant trehalase enzymatic activities, suggesting the capacity to utilize trehalose. Trehalase activity was developmentally regulated in F. scutaria larvae, rising as the time for symbiont uptake occurs. Consistent with the enzymatic assays, gene finding demonstrated the presence of a trehalase enzyme in the genome of a related coral, Acropora digitifera, and a likely trehalase in the transcriptome of F. scutaria. Taken together, these data suggest that adult F. scutaria seed the reef with Symbiodinium during spawning and the exuded Symbiodinium release trehalose into the environment, which acts as a chemoattractant for F. scutaria larvae and as an initiator of feeding behavior- the first stages toward establishing the coral-Symbiodinium relationship. Because trehalose is a fixed carbon compound, this cue would accurately demonstrate to the cnidarian larvae the photosynthetic ability of the potential symbiont in the ambient environment. To our knowledge, this is the first report of a chemical cue attracting the motile coral larvae to the symbiont
- …