155 research outputs found

    Computational Molecular Biology

    No full text
    Computational Biology is a fairly new subject that arose in response to the computational problems posed by the analysis and the processing of biomolecular sequence and structure data. The field was initiated in the late 60's and early 70's largely by pioneers working in the life sciences. Physicists and mathematicians entered the field in the 70's and 80's, while Computer Science became involved with the new biological problems in the late 1980's. Computational problems have gained further importance in molecular biology through the various genome projects which produce enormous amounts of data. For this bibliography we focus on those areas of computational molecular biology that involve discrete algorithms or discrete optimization. We thus neglect several other areas of computational molecular biology, like most of the literature on the protein folding problem, as well as databases for molecular and genetic data, and genetic mapping algorithms. Due to the availability of review papers and a bibliography this bibliography

    Real space first-principles derived semiempirical pseudopotentials applied to tunneling magnetoresistance

    Full text link
    In this letter we present a real space density functional theory (DFT) localized basis set semi-empirical pseudopotential (SEP) approach. The method is applied to iron and magnesium oxide, where bulk SEP and local spin density approximation (LSDA) band structure calculations are shown to agree within approximately 0.1 eV. Subsequently we investigate the qualitative transferability of bulk derived SEPs to Fe/MgO/Fe tunnel junctions. We find that the SEP method is particularly well suited to address the tight binding transferability problem because the transferability error at the interface can be characterized not only in orbital space (via the interface local density of states) but also in real space (via the system potential). To achieve a quantitative parameterization, we introduce the notion of ghost semi-empirical pseudopotentials extracted from the first-principles calculated Fe/MgO bonding interface. Such interface corrections are shown to be particularly necessary for barrier widths in the range of 1 nm, where interface states on opposite sides of the barrier couple effectively and play a important role in the transmission characteristics. In general the results underscore the need for separate tight binding interface and bulk parameter sets when modeling conduction through thin heterojunctions on the nanoscale.Comment: Submitted to Journal of Applied Physic

    Planar Embeddings with Small and Uniform Faces

    Full text link
    Motivated by finding planar embeddings that lead to drawings with favorable aesthetics, we study the problems MINMAXFACE and UNIFORMFACES of embedding a given biconnected multi-graph such that the largest face is as small as possible and such that all faces have the same size, respectively. We prove a complexity dichotomy for MINMAXFACE and show that deciding whether the maximum is at most kk is polynomial-time solvable for k4k \leq 4 and NP-complete for k5k \geq 5. Further, we give a 6-approximation for minimizing the maximum face in a planar embedding. For UNIFORMFACES, we show that the problem is NP-complete for odd k7k \geq 7 and even k10k \geq 10. Moreover, we characterize the biconnected planar multi-graphs admitting 3- and 4-uniform embeddings (in a kk-uniform embedding all faces have size kk) and give an efficient algorithm for testing the existence of a 6-uniform embedding.Comment: 23 pages, 5 figures, extended version of 'Planar Embeddings with Small and Uniform Faces' (The 25th International Symposium on Algorithms and Computation, 2014

    An alternative method to crossing minimization on hierarchical graphs

    Get PDF
    A common method for drawing directed graphs is, as a first step, to partition the vertices into a set of kk levels and then, as a second step, to permute the verti ces within the levels such that the number of crossings is minimized. We suggest an alternative method for the second step, namely, removing the minimal number of edges such that the resulting graph is kk-level planar. For the final diagram the removed edges are reinserted into a kk-level planar drawing. Hence, i nstead of considering the kk-level crossing minimization problem, we suggest solv ing the kk-level planarization problem. In this paper we address the case k=2k=2. First, we give a motivation for our appro ach. Then, we address the problem of extracting a 2-level planar subgraph of maximum we ight in a given 2-level graph. This problem is NP-hard. Based on a characterizatio n of 2-level planar graphs, we give an integer linear programming formulation for the 2-level planarization problem. Moreover, we define and investigate the polytop e \2LPS(G) associated with the set of all 2-level planar subgraphs of a given 2 -level graph GG. We will see that this polytope has full dimension and that the i nequalities occuring in the integer linear description are facet-defining for \2L PS(G). The inequalities in the integer linear programming formulation can be separated in polynomial time, hence they can be used efficiently in a branch-and-cut method fo r solving practical instances of the 2-level planarization problem. Furthermore, we derive new inequalities that substantially improve the quality of the obtained solution. We report on extensive computational results

    Graph Treewidth and Geometric Thickness Parameters

    Full text link
    Consider a drawing of a graph GG in the plane such that crossing edges are coloured differently. The minimum number of colours, taken over all drawings of GG, is the classical graph parameter "thickness". By restricting the edges to be straight, we obtain the "geometric thickness". By further restricting the vertices to be in convex position, we obtain the "book thickness". This paper studies the relationship between these parameters and treewidth. Our first main result states that for graphs of treewidth kk, the maximum thickness and the maximum geometric thickness both equal k/2\lceil{k/2}\rceil. This says that the lower bound for thickness can be matched by an upper bound, even in the more restrictive geometric setting. Our second main result states that for graphs of treewidth kk, the maximum book thickness equals kk if k2k \leq 2 and equals k+1k+1 if k3k \geq 3. This refutes a conjecture of Ganley and Heath [Discrete Appl. Math. 109(3):215-221, 2001]. Analogous results are proved for outerthickness, arboricity, and star-arboricity.Comment: A preliminary version of this paper appeared in the "Proceedings of the 13th International Symposium on Graph Drawing" (GD '05), Lecture Notes in Computer Science 3843:129-140, Springer, 2006. The full version was published in Discrete & Computational Geometry 37(4):641-670, 2007. That version contained a false conjecture, which is corrected on page 26 of this versio

    Atomic matter wave scanner

    Get PDF
    We report on the experimental realization of an atom optical device, that allows scanning of an atomic beam. We used a time-modulated evanescent wave field above a glass surface to diffract a continuous beam of metastable Neon atoms at grazing incidence. The diffraction angles and efficiencies were controlled by the frequency and form of modulation, respectively. With an optimized shape, obtained from a numerical simulation, we were able to transfer more than 50% of the atoms into the first order beam, which we were able to move over a range of 8 mrad.Comment: 4 pages, 4 figure

    A note on computing a maximal planar subgraph using PQ-trees

    Get PDF
    The problem of computing a maximal planar subgraph of a non planar graph has been deeply investigated over the last 20 years. Several attempts have been tried to solve the problem with the help of PQ-trees. The latest attempt has been reported by Jayakumar et al. [10]. In this paper we show that the algorithm presented by Jayakumar et al. is not correct. We show that it does not necessarily compute a maximal planar subgraph and we note that the same holds for a modified version of the algorithm presented by Kant [12]. Our conclusions most likely suggest not to use PQ-trees at all for this specific problem

    Automatisiertes Zeichnen von Diagrammen

    Get PDF
    Dieser Artikel wurde für das Jahrbuch 1995 der Max-Planck-Gesellschaft geschrieben. Er beinhaltet eine allgemein verständliche Einführung in das automatisierte Zeichnen von Diagrammen sowie eine kurze Übersicht üuber die aktuellen Forschungsschwerpunkte am MPI

    Assessing personality in San Joaquin kit fox in situ: efficacy of field-based experimental methods and implications for conservation management

    Get PDF
    Utilisation of animal personality has potential benefit for conservation management. Due to logistics of robust behavioural evaluation in situ, the majority of studies on wild animals involve taking animals into captivity for testing, potentially compromising results. Three in situ tests for evaluation of boldness in San Joaquin kit fox (Vulpes macrotis mutica) were developed (ENOT: extended novel object test; RNOT: rapid novel object test; TH: trap/handling test). Each test successfully identified variation in boldness within its target age class(es). The TH test was suitable for use across all age classes. Tests were assessed for in situ suitability and for quantity/quality of data yielded. ENOT was rated as requiring high levels of time, cost and labour with greater likelihood of failure. However, it was rated highly for data quantity/quality. The TH test was rated as requiring little time, labour and cost, but yielding lower quality data. RNOT was rated in the middle. Each test had merit and could be adapted to suit project or species constraints. We recommend field-based evaluation of personality, reducing removal of animals from the wild and facilitating routine incorporation of personality assessment into conservation projects
    corecore