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Abstract. A common method for drawing directed graphs is, as a �rst step, to partition the vertices

into a set of k levels and then, as a second step, to permute the vertices within the levels such that

the number of crossings is minimized. We suggest an alternative method for the second step,

namely, removing the minimal number of edges such that the resulting graph is k-level planar. For

the �nal diagram the removed edges are reinserted into a k-level planar drawing. Hence, instead of

considering the k-level crossing minimization problem, we suggest solving the k-level planarization

problem. In this paper we address the case k = 2. First, we give a motivation for our approach.

Then, we address the problem of extracting a 2-level planar subgraph of maximum weight in

a given 2-level graph. This problem is NP-hard. Based on a characterization of 2-level planar

graphs, we give an integer linear programming formulation for the 2-level planarization problem.

Moreover, we de�ne and investigate the polytope 2LPS(G) associated with the set of all 2-level

planar subgraphs of a given 2-level graph G. We will see that this polytope has full dimension and

that the inequalities occuring in the integer linear description are facet-de�ning for 2LPS(G). The

inequalities in the integer linear programming formulation can be separated in polynomial time,

hence they can be used e�ciently in a branch-and-cut method for solving practical instances of the

2-level planarization problem. Furthermore, we derive new inequalities that substantially improve

the quality of the obtained solution. We report on extensive computational results.

Key words: 2-Level Graphs, 2-Level Planarization, Integer Linear Programming, Polyhedral Com-

binatorics, Branch-and-Cut

1. Introduction

Directed graphs are widely used to represent structures in many �elds such as economics, social

sciences, mathematical and computer science. A good visualization of structural information allows

the reader to focus on the information content of the diagram.

A common method for drawing directed graphs has been introduced by Sugiyama et al. [STT81]

and Carpano [Car80]. In the �rst step, the vertices are partitioned into a set of k levels, and in the

second step, the vertices within each level are permuted in such a way that the number of crossings

is small. We suggest an alternative approach for the second step. From now on let us assume that

* Partially supported by DFG-Grant Ju204/7-1, Forschungsschwerpunkt \E�ziente Algorithmen f�ur

diskrete Probleme und ihre Anwendungen" and by ESPRIT LTR Project no. 20244 { ALCOM-IT
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Fig. 1. A real world graph with high crossing number [Fuk96]

we are given a k-level hierarchy (k-level graph), i.e., a graph G = (V;E) = (V

1

; V

2

; : : : ; V

k

; E) with

vertex sets V

1

; : : : ; V

k

, V = V

1

[ V

2

: : : [ V

k

, V

i

\ V

j

= ; for i 6= j, and an edge set E connecting

vertices in levels V

i

and V

j

with i 6= j (1 � i; j � k). V

i

is called the i-th level. A k-level hierarchy

is drawn in such a way that the vertices in each level V

i

are drawn on a horizontal line L

i

with

y-coordinate k � i, and the edges are drawn as straight lines. In contrary to the de�nitions of a

hierarchy in [STT81,HP96], we do not care about the direction of the edges, since it is irrelevant

for the problem considered here. Essentially, a k-level hierarchy is a k-partite graph that is drawn

in a special way.

Even for 2-level graphs the straightline crossing minimization problem is NP-hard. Exact algo-

rithms based on branch and bound have been suggested by various authors (see, e.g., [VML96] and

[JM96]). For k � 2, a vast amount of heuristics has been published in the literature (see, e.g.,

[War77,STT81,EK86,M�ak90,EW94a] and [Dre94]).

Various authors have already asked the following question: Is a hierarchical drawing with the

minimal number of crossings always nicer than a drawing that has many more crossings? They

ended up with the following answer: \We merely want to draw a reasonably clear picture which

has a \relatively small" number of crossings" [Car80].

For graphs that have a relatively small hierarchical crossing number, this statement goes along

with our observation. But in some applications, hierarchical graphs arise that have a relatively

high hierarchical crossing number, such as the graph shown in Figure 1. For these graphs we have

to �nd a new method that substantially increases the readability of these diagrams.

One approach may be to remove a minimal set of edges such that the remaining k-level graph can

be drawn without edge crossings. In the �nal drawing, the removed edges are reinserted. Since

the insertion of each edge may produce many crossings, the �nal drawing may be far from an

edge-crossing minimal drawing.

Figure 2(a) shows a drawing of a graph obtained by 2-level planarization, whereas Figure 2(b) shows

the same graph drawn with the minimal number of edge crossings (using the exact algorithm given

in [JM96]). Although the drawing in Figure 2(a) has 34 crossings, that is 41% more crossings than

the drawing in Figure 2(b) (24 crossings), the reader will not recognize this fact. On the contrary,

90% of the colleagues that we have asked thought that the number of crossings in Figure 2(a) is
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(a)

4 6 78 5 15 14 3 2 13

2321 29 28 25 26 27 20

1 1112 9

1722 30

(b)

4 6 73 5 8 14 2 12 15

2321 29 28 26 25 27 20

1 119 13

1722 30

Fig. 2. A graph (a) drawn using k-planarization and (b) drawn with the minimal number of

crossings computed by the algorithm in [JM96]

less than in Figure 2(b). This encourages us to study the k-level planarization problem.

Another motivation for studying k-level planarization arises from the fact that the k-level crossing

minimization problem is a very hard problem that cannot be solved exactly or approximately (with

some reasonable solution guarantees) in practice. Our experiments in [JM96] showed that for sparse

graphs, such as they occur in graph drawing, the heuristic methods used in practice are far from

the optimum. We believe that the methods of polyhedral combinatorics that have been successfully

applied for the maximum planar subgraph problem [JM93a,JM93b,Mut94], and for the straightline

crossing minimization problem on two levels where one level is �xed [JM96], may be helpful for

getting some better approximation algorithms in practice. But a lot of e�ort will be needed to get

e�cient algorithms that will be able to solve the k-level crossing minimization problem for k > 2

and jV

i

j � 15 (i = 1; : : : ; k) to provable optimality.

The k-level planarization problem, however, may be easier to attack. We build our hope on the

fact that there is a linear time algorithm for recognizing k-level planar graphs (see [HP96] and

[BN88]). Moreover, our computational results on 2-level graphs addressed in this paper support

our conjecture.

Besides the application in automatic graph drawing, the 2-level planarization problem comes up in

Computational Biology. In DNA mapping, small fragments of DNA have to be ordered according

to the given overlap data and some additional information. Waterman and Griggs [WG86] have

suggested combining the information derived by a digest mapping experiment with the information

on the overlap between the DNA fragments. If the overlap data is correct, the maps can be

represented as a 2-level planar graph. But, in practice, the overlap data may contain errors. Hence,

Waterman and Griggs suggested solving the 2-level planarization problem (see also [VLM97]).

Furthermore, the 2-level planarization problem arises in global routing for row-based VLSI layout

(see [Len90,Ull84]).

Section 2 reports on previously known results of the 2-level planarization problem. One of the char-

acterizations of 2-level planar graphs leads directly to an integer linear programming formulation

for the 2-level planarization problem. In Section 3 we study the polytope associated with the set
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of all possible 2-level planar subgraphs of a given 2-level graph. From this we obtain new classes of

inequalities that tighten the associated LP-relaxation. In order to get practical use out of these in-

equalities, we have to solve the \separation problem". This question will be addressed in Section 4,

where we also discuss a branch-and-cut algorithm based on those results. First computational

results with a branch-and-cut algorithm are presented in Section 5.

2. Characterizing 2-Level Planar Graphs

A 2-level graph is a graph G = (L; U;E) with vertex sets L and U , called lower and upper level, and

an edge set E connecting a vertex in L with a vertex in U . There are no edges between two vertices

in the same level. A 2-level planar graph G = (L; U;E) is a graph that can be drawn in such a way

that all the vertices in L appear on a line (the lower line), the vertices in U appear on the upper

line, and the edges are drawn as straight lines without crossing each other. The di�erence between

a planar bipartite graph and a 2-level planar graph is obvious. For example, the graph shown in

Figure 3 is a planar bipartite graph, but not a 2-level planar graph.

(a) (b)

Fig. 3. (a) A planar bipartite graph that is (b) not 2-level planar

Given a 2-level graph G = (L; U;E) with weights w

e

> 0 on the edges, the 2-level planarization

problem (or maximum 2-level planar subgraph problem) is to extract a 2-level planar subgraph

G

0

= (L; U; F ), F � E, of maximum weight, i.e., the sum

P

e2F

w

e

is maximum.

To our knowledge, only the unweighted (w

e

= 1 for all e 2 E) 2-level planarization problem has

been considered in the literature so far. It was �rst mentioned in [TKY77]. The authors introduced

the problem in the context of graph drawing. They have given the following nice characterization

of 2-level planar graphs based on forbidden subgraphs. The characterization was independently

given by [EKW86].

We will call the graph shown in Figure 4(a) a double claw. A caterpillar is a connected graph G =

(V;E) having edges on its backbone (v

1

; v

2

; : : : ; v

l

) and single edges (v

i

; w), w 2 V n fv

1

; v

2

; : : : ; v

l

g

(see Figure 4(b)).

Theorem 2.1 [TKY77,EKW86]. A 2-level graph is 2-level planar if and only if it contains no

cycle and no double claw.

Proof. A graph without any cycles is a set of trees. A tree without any double claws is a set of

caterpillars. Caterpillars can be embedded on 2-levels without any crossings (see Figure 4(c)). On

the other hand, a 2-level planar graph can contain neither a cycle nor a double claw.

The following alternative characterization leading to a simple linear time algorithm has been given

in [TKY77].
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(a) (b)

(c)

v1

v3v2
v4

v6v5

v7
v8

v1

v2

v3

v4

v5

v6

v7

v8

Fig. 4. (a) Double claw. (b) Caterpillar. (c) Caterpillars can be embedded on 2-levels without

any crossings.

Theorem 2.2 [TKY77]. A 2-level graph G is 2-level planar if and only if the graph G

�

that is

the remainder of G after deleting all vertices of degree one, is acyclic and contains no vertices of

degree at least three.

However, the 2-level planarization problem is NP-hard even for the case when each vertex in U has

degree three and each vertex in L has degree two (by reduction to a Hamiltonian path problem)

[EW94b]. Therefore, Eades and Whitesides suggested a heuristic based on the search for a longest

path which will be used as a \backbone" of the caterpillar to be constructed.

Tomii et al. suggest an algorithm for acyclic 2-level graphs [TKY77]. The algorithm can be seen

as an adaptive greedy algorithm. In each step, the edges are labelled according to some rule and

the edge with the highest label will be removed. However, this algorithm does not lead to the

optimal solution as shown in Figure 5. The algorithm would remove the edge (0; 14) in a �rst step.

The remaining graph still contains two edge-disjoint double-claws that have to be destroyed by

removing two more edges, whereas the optimal solution would be to remove the two edges (0; 11)

and (1; 14).

5 0 76 1 9 8 2 4 3

1218 14 19 16 17 10 15 11 13

Fig. 5. An acyclic 2-level graph for which the algorithm suggested in [TKY77] leads to a nonoptimal

solution

It is an open problem if the 2-level planarization problem can be solved in polynomial time for

2-level acyclic graphs. However, for double claw free graphs, the 2-level planarization problem
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is equivalent to the maximum forest subgraph problem that can be solved via a simple greedy

algorithm.

3. Polyhedral Studies on the 2-Level Planarization Problem

Based on the characterization of 2-level planar graphs in terms of forbidden subgraphs (see Theo-

rem 2.1), it is straightforward to derive an integer linear programming formulation for the maximum

2-level planar subgraph problem. We introduce variables x

e

for all edges e 2 E of the given 2-

level graph G = (L; U;E). We use the following notation: Vectors �x are column vectors, their

transposed vectors �x

T

are row vectors. If w

T

= (w

1

; w

2

; : : : ; w

m

) and �x

T

= (x

1

; x

2

; : : : ; x

m

), then

w

T

�x =

P

m

i=1

w

i

x

i

. We use the notation x(C) =

P

e2C

x

e

for C � E.

For any set P � E of edges we de�ne an incidence vector �

P

2 R

jEj

with the i-th component

�

P

(e

i

) getting value 1 if e

i

2 P , and 0 otherwise. Any vector �x

T

= (x

e

1

; x

e

2

; : : : ; x

e

jEj

), that is the

incidence vector of a 2-level planar graph satis�es the following inequalities:

0 � x

e

� 1, for all e 2 E, (1)

x(C) � jCj � 1, for all cycles C � E (2)

x(T ) � jT j � 1, for all double claws T � E (3)

x

e

integral, for all e 2 E (4)

and vice versa: any vector �x

T

= (x

e

1

; x

e

2

; : : : ; x

e

jEj

) satisfying inequalities (1), (2), (3) and (4)

corresponds to a 2-level planar subgraph of G. Hence, solving the integer linear system fmax w

T

�x j

inequalities (1)-(4) hold for �xg will give us the solution of the maximum 2-level planar subgraph

problem for a given graph G = (L; U;E) with weights w

e

on the edges e 2 E.

Since solving general integer linear programs is NP-hard, we will have to drop the integrality

constraints (4), which gives us a relaxation of the original integer linear programming formulation.

In polyhedral combinatorics, we try to substitute the missing integrality constraints by additional

inequalities.

We de�ne the polytope 2LPS(G) for a given 2-level graph G = (L; U;E) as the convex hull over all

incidence vectors of 2-level planar subgraphs of G. The vertices of this polytope correspond exactly

to the 2-level planar subgraphs of G and vice versa. If we can describe the polytope 2LPS(G) as

the solution set of linear inequalities, we can optimize any given cost function over the set of all

2-level planar subgraphs of G. Of course, because of the NP-hardness of the problem we cannot

expect to �nd such a description, but in practice a partial description may also su�ce.

In an irredundant description only facet-de�ning inequalities are present. An inequality is said to

be facet-de�ning for a polytope P if it is a face of maximal dimension of P . An inequality c

T

x � c

0

is said to de�ne a face of P if c

T

y � c

0

for all points y 2 P and if there is at least one point y

0

in

P with c

T

y

0

= c

0

.

So, our task is to �nd facet-de�ning inequalities for the polytope 2LPS(G) for a given 2-level graph

G. We will �rst investigate the inequalities given in the integer linear programming formulation. We

will see that the linear inequalities (1) and (3) are facet-de�ning, but only a part of the inequalities

(2). But �rst we will determine the dimension of 2LPS(G).

Let us consider the set S of all 2-level planar subgraphs of G. The set S is a monotone system

(also called independence system), since the empty subgraph is 2-level planar and any subgraph of

a 2-level planar graph is also 2-level planar. Hence, we easily get the following theorem using the

theory for monotone systems.
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Theorem 3.1 Let G = (L; U;E) be a graph on two levels. The dimension of 2LPS(G), the

convex hull of incidence vectors of 2-level planar subgraphs of G, is jEj. The trivial inequalities

x

e

� 0 and x

e

� 1 are facet-de�ning for 2LPS(G).

Proof. It is a well known fact, that for a monotone system (E;S) with ground set E the dimension

of the associated polyhedron P

S

is jEj�(jE�

S

Sj) (a proof is contained, e.g., in [GP85]). Moreover,

x

e

� 0 de�nes a facet of P

S

i� e 2

S

S. Since every single edge is 2-level planar, we have

S

S = E.

Hence the dimension of the polyhedron 2LPS(G) is jEj and x

e

� 0 is facet-de�ning for 2LPS(G).

Let P

i

be the 2-level planar graphs induced by the edge sets fe [ e

i

g for a given edge e 2 E and

e

i

2 E n feg for i = 1; : : : ; jEj� 1. The incidence vectors of the graph P induced by the edge e and

the graphs P

i

for i = 1; 2; : : : ; jEj � 1 are linearly independent and they satisfy x

e

= 1. Hence we

have shown that x

e

� 1 is facet-de�ning for 2LPS(G).

Next we will see that not all of the inequalities (2) are facet-de�ning for 2LPS(G).

Theorem 3.2 Let G = (L; U;E) be a 2-level graph. The cycle inequalities

x(C) � jCj � 1

where C � E induces a cycle in G are facet-de�ning for 2LPS(G) if and only if C induces a cycle

without chords in G.

Proof. Let C � E be a cycle without chord in G. We will show that there are jEj incidence

vectors of 2-level planar subgraphs induced by the edge set F of G that are linearly independent

and that satisfy �

F

(C) = jCj � 1. Consider the graphs induced by the edge sets F

i

= C n fe

i

g for

e

i

2 C for i = 1; 2; : : : ; jCj. Moreover, consider the graphs induced by the edge sets H

j

= F

1

[ f

j

for f

j

2 E n C, j = 1; 2; : : : ; jEj � jCj. Since the cycle C is chordless, adding any edge f

j

2 E n C

to F

1

still gives a 2-level planar graph, since neither a cycle nor a double claw destroying 2-level

planarity can occur. All the jEj incidence vectors of the 2-level planar graphs induced by F

i

for

i = 1; 2; : : : ; jCj andH

j

for j = 1; 2; : : : ; jEj�jCj are linearly independent and they satisfy inequality

(2) with equality. Hence the facet-de�ning property is shown.

Suppose now, C = (v

1

; v

2

; : : : ; v

k

; v

1

) is a cycle with a chord d = (v

h

; v

l

) 2 E, d 62 C, in G for some

h; l 2 f1; 2; : : : ; kg. There exists no 2-level planar graph containing the edge d and jCj � 1 edges of

C. Hence, there exists no point x in 2LPS(G) with x

d

= 1, which will prove our claim.

In the following we will see that all the double claws contained in G are present in an irredundant

description of 2LPS(G) by linear inequalities.

Theorem 3.3 Let G = (L; U;E) be a 2-level graph. The double claw inequalities

x(T ) � jT j � 1

where T � E induces a double claw in G are facet-de�ning for 2LPS(G).

Proof. Let F

i

= T n e

i

for i = 1; : : : ; 6. Obviously, the graphs induced by F

i

are 2-level planar

graphs and satisfy inequality (3) with equality. Moreover, consider the graphs induced by H

j

=

T [ f

j

for f

j

2 E n T , j = 1; 2; : : : ; jEj � jT j. If H

j

contains a cycle C, we can remove any edge

in C \ T in order to get a 2-level planar graph induced by H

0

j

. In all the other cases there is
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always an edge we can remove from H

j

such that the remaining set H

0

j

induces a set of caterpillars.

Clearly, the incidence vectors of the 2-level planar subgraphs induced by F

i

, i = 1; 2; : : : ; 6, and H

0

j

,

j = 1; 2; : : : ; jEj � jT j of G are linearly independent and satisfy inequality (3) with equality.

We can tighten the LP-relaxation of (1){(3) by introducing new inequalities that are valid and

tight in the sense that they are facet-de�ning for 2LPS(G). First, we generalize the double-claw

inequalities to k-double claw inequalities. Considering a double-claw as a claw having three paths

of length two, a generalized k-double claw is a claw having k paths of length two (see Figure 6(a)).

(a)

...

...

(c)(b)

...

...

...

...

v ’ v ’’

...

...

..

...

Fig. 6. (a) Generalized k-double claw (b) Combined k-double claw (c) Node-splitted k-double

claw

Theorem 3.4 Let G = (L; U;E) be a 2-level graph. The generalized k-double claw inequalities

x(T ) � k + 2 (5)

where T � E induces a k-double claw in G (k � 3) are facet-de�ning for 2LPS(G).

Proof. Obviously, the inequality is valid. We denote x(T ) � k + 2 by c

T

x � c

0

. Let us assume

that there exists an inequality a

T

x � a

0

with fx j c

T

x = c

0

g � fx j a

T

x = a

0

g. We show

that a

e

= �c

e

and a

0

= �c

0

for � > 0. Let r be the root of the k-double claw and P denote

the subgraph of G = (V;E) induced by the edge set F := f(r; w) j w 2 N(r) \ V (T )g, where

N(r) = fv j (r; v) 2 Eg is the neighbourhood of r. Adding any two edges e

1

6= e

2

in T n F to P

gives a 2-level planar subgraph P

0

induced by the edge set F

0

= fF [e

1

[e

2

g satisfying c

T

�

F

0

= c

0

,

hence also a

T

�

F

0

= a

0

. Since we can substitute e

1

and e

2

by any of the edges in T n F

0

we get

a

e

= a

f

for all e; f 2 T n F . Inserting the edge e

3

= (w

3

; u

3

) 2 T n F

0

with w

3

2 N(r) \ V (T ) in

P

0

while removing the edge e

0

3

= (r; w

3

) gives a

e

3

= a

e

0

3

and �nally a

e

= a

f

for all e; f 2 T .

For any edge e 2 E n T we can �nd a 2-level planar subgraph induced by the edge set F

00

with

e 2 F

00

satisfying c

T

�

F

00

= c

0

. Hence a

e

= 0 for all e 2 E n T .

We can prove that the combined k-double claws give rise to a class of facet-de�ning inequalities for

our polytope. A combined k-double claw T = (T

1

; T

2

) consists of two k

i

-double claws T

i

, i = 1; 2,

that share a single edge which has an endnode of degree one (see Figure 6(b)).

Theorem 3.5 The combined k-double claw inequalities

x(T ) � k

1

+ k

2

+ 3 (6)

where T = (T

1

; T

2

) � E induces a combined k-double claw in G with parameters k

1

� 3 and k

2

� 3

are facet-de�ning for 2LPS(G) if and only if there exist no edges (r

1

; v

2

) and (r

2

; v

1

) in G, where

r

i

is the root of T

i

and v

i

2 T

i

for i = 1; 2.
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Proof. Let e

0

= (l; u) denote the edge contained in both k

i

-double claws G

i

= (L

i

; U

i

; T

i

) and let

T = T

1

[ fT

2

n fe

0

gg. We �rst show validity. Let us assume that there is a 2-level planar subgraph

induced by the edge set F violating inequality (6). Let r

i

2 U

i

, and e

i

= (r

i

; l) for i = 1; 2. The set

T

2

\ F cannot contain more than k

2

+ 2 edges. On the other hand, the set T

1

n fe

0

; e

1

g induces a

(k

1

� 1)-claw and can contain at most k

1

� 1+2 = k

1

+1 edges. Since T = T

1

n fe

0

; e

1

g[T

2

[fe

1

g,

we have e

1

2 F , otherwise, (6) is not violated. Symmetrically, we also get e

2

2 F . Now, consider

the k

2

-double claw T

0

2

= T

2

n fe

0

g [ fe

1

g � F . The set T

0

2

\ F cannot contain more than k

2

edges

in addition to e

1

and e

2

. We get a symmetrical argument for F \ T

0

1

, where T

0

1

= T

1

n fe

0

g [ fe

2

g.

Altogether F cannot contain more than k

1

+ k

2

+ 3 edges, since F � T

0

1

[ (T

0

2

n fe

1

; e

2

g) [ e

0

.

Now, let us assume that there is an inequality a

T

x � a

0

with fx j c

T

x = c

0

g � fx j a

T

x = a

0

g,

where c

T

x � c

0

denotes inequality (6). The set T

00

1

= T

1

n fe

0

; e

1

g induces a (k

1

� 1)-double claw

which is not connected with T

2

. Combining any 2-level planar subgraph of size (k

1

� 1) + 2 in T

00

1

with anyone of size k

2

+2 in T

2

gives a 2-level planar subgraph of size k

1

+ k

2

+3 in T . Because of

Theorem 3.4, we have that a

e

00

= a

f

00

for all e

00

; f

00

2 T

00

1

, and a

e

= a

f

for all e; f 2 T

2

. Symmetrical

arguments for T

00

2

= T

2

n fe

0

; e

1

g and T

1

together with the facet that e

0

2 fT

1

\T

2

g lead to a

e

= a

f

for all e; f 2 T .

We have already seen that zero-lifting is possible within the k

i

-claws (i = 1; 2). The critical edges to

add are those connecting T

1

and T

2

. Let e = (l

2

; u

1

) be such a critical edge with l

2

2 L

2

, u

1

2 U

1

.

If u

1

6= r

1

, we can show that a

e

= 0. But in the case that u

1

= r

1

, there exists no 2-level planar

subgraph induced by the edge set F with c

T

�

F

= c

0

containing the edge e. Hence, in this case,

inequality (6) is not facet-de�ning for 2LPS(G).

The node-splitting operation at vertex v in a graph G substitutes the subgraph induced by the

edge set f(v; w) j w 2 N(v)g by a new subgraph induced by f(v

0

; w

0

) j w

0

2 W

0

g [ f(v

00

; w

00

) j

w

00

2 W

00

g [ f(v

0

; v

00

)g, where N(v) is the set of adjacent vertices of v in G, W

0

;W

00

� N(v)

with W

0

[W

00

= N(v) and W

0

\W

00

= ;. The vertices v

0

and v

00

are the duplicates of v. The

resulting graph when splitting the root node of a k-double claw is called node-split k-double claw

with parameters k

1

and k

2

(see Figure 6(c)). The inequalities derived for those graphs contain a

coe�cient of two.

Theorem 3.6 Let G = (L; U;E) be a 2-level graph. The node-split k-double claw inequalities

x(T ) + 2x

(r

1

;r

2

)

� k

1

+ k

2

+ 4 (7)

where T � E induces a node-split k-double claw G

0

in G with parameters k

1

� 2 and k

2

� 2 are

facet-de�ning for 2LPS(G).

Proof. Let e

0

= (r

1

; r

2

) and T = T

1

[ T

2

[ fe

0

g, where T

1

and T

2

are the edge sets inducing

the two components of T n fe

0

g. We �rst show validity. Let us assume that there exists a 2-level

planar subgraph P induced by the edge set F violating the inequality (7). We know that T

1

\ F

and T

2

\ F cannot contain more than k

1

+ 2 and k

2

+ 2 edges. If e

0

62 F , the inequality cannot be

violated by P . But if e

0

2 F , either T

1

contains at most k

1

edges, T

2

contains at most k

2

edges, or

T

1

and T

2

contain at most k

1

+1 and k

2

+1 edges in order to ensure 2-level planarity of P . Hence,

inequality (7) cannot be violated with P and validity is shown.

Now let us assume that there is an inequality a

T

x � a

0

with fx j c

T

x = c

0

g � fx j a

T

x = a

0

g,

where c

T

x � c

0

denotes inequality (7). Let P be the 2-level planar subgraph induced by k

1

+ 2

edges in T

1

and k

2

+ 2 edges in T

2

(edge set F = F

1

[ F

2

, F

i

2 t

i

for i = 1; 2) not containing e

0

.

9



If k

i

� 3, then any edge in F

i

can be substituted by an edge e

i

2 T

i

n F

i

maintaining the 2-level

planarity. Hence in this case we have shown that a

e

= a

f

for all e; f 2 T

i

. Otherwise, let us assume

that k

i

= 2. It is not hard to see that there is a 2-level planar subgraph P

0

containing e

0

and k

i

+1

edges of T

i

, i = 1; 2 (induced by the edge set F

0

). Any edge in F

0

\ T

i

can be substituted by an

edge f 2 T

i

, f 62 F

0

without destroying 2-level planarity. Hence, a

e

= a

f

for all e; f 2 T

i

. Taking

the di�erence of a

T

�

F

and a

T

�

F

0

yields a

e

0

= a

e

1

+ a

e

2

for e

i

2 T

i

, i = 1; 2. Moreover, there is

a 2-level planar subgraph induced by e

0

, k

1

+ 2 edges in T

1

and k

2

edges in T

2

. Hence, we have

shown that a

e

1

= a

e

2

for all e

1

2 T

1

, e

2

2 T

2

and a

e

0

= 2a

e

for all e 2 T

1

[ T

2

if k

1

; k

2

� 2. Hence,

inequality (7) is facet-de�ning for 2LPS(G

0

).

It remains to show that a

e

= 0 for all edges e 2 E nT if G

0

= (V

0

; T ) with T � E and V

0

� V . Since

zero-lifting is possible for double claw inequalities, we can restrict our attention to edges e = (v; w)

with v 2 G

1

and w 2 G

2

, where G

1

and G

2

denote the graphs induced by the edge sets T

1

and

T

2

. For the two possible cases, we can always �nd a 2-level planar graph containing the edge e

0

,

an additional edge e 62 T , and k

1

+ k

2

+ 4 edges of T in total.

In the case that the given 2-level graph contains no double claw, the 2-level planarization problem

is equivalent to the maximum forest problem. It is well known that this problem can be solved in

polynomial time by a simple greedy algorithm. Moreover, the structure of the associated weighted

forest polytope has been well studied (see, e.g., [Edm70]). The inequalities of the weighted forest

polytope are still valid for our polytope 2LPS(G), even if the graph G contains double claws. And,

as we will see in our computational experiments, they are quite useful in practice.

Lemma 3.7 Let G = (L; U;E) be a 2-level graph. The forest inequalities

x(F ) � V (F )� 1 (8)

where F � E and V (F ) is the number of vertices contained in the subgraph induced by F are valid

for 2LPS(G).

The special case when F induces a complete bipartite subgraph of a 2-level graph G leads to

forest inequalities that are facet-de�ning for 2LPS(G). We will call them crown inequalities. For

jL

0

j = jU

0

j = 2, the crown inequalities are equivalent to the cycle inequalities for jCj = 4. Hence,

the crown inequalities are a generalization of this cycle inequality.

Theorem 3.8 Let G = (L; U;E) be a 2-level graph containing a complete bipartite subgraph

G

0

= (L

0

; U

0

; E

0

), E

0

� E. The crown inequalities

x(E

0

) � jL

0

j+ jU

0

j � 1 (9)

with jL

0

j � 2 and jU

0

j � 3 are facet-de�ning for 2LPS(G).

Proof. The validity follows from Lemma 3.8. Let us assume that there is an inequality a

T

x � a

0

with fx j c

T

x = c

0

g � fx j a

T

x = a

0

g, where c

T

x � c

0

denotes inequality (9). Let U

0

=

fu

1

; : : : ; u

jU

0

j

g, L

0

= fl

1

; : : : ; l

jL

0

j

g, u 2 U

0

, and l 2 L

0

. The edge set F = f(u; l

i

) j l

i

2 L

0

; i =

1; : : : ; jL

0

jg [ f(l; u

i

) j u

i

2 U

0

n fug; i = 1; : : : ; jL

0

jg induces a 2-level planar subgraph satisfying

c

T

�

F

= c

0

, hence also a

T

�

F

= c

0

. Removing the edge (l; u) from F and adding the edge fu

i

; l

i

g,

where u

i

6= u, l

i

6= l, u

i

2 U

0

, and l

i

2 L

0

, will still leave a 2-level planar graph. Hence, we

10



have a

(u;l)

= a

(u

i

;l

i

)

, and since we can choose u and l free among the vertices, we have a

e

= a

f

for all e 2 E

0

. On the other hand, it is always possible to add an extra edge (l

i

; v) 2 E n E

0

or

(u

i

; v) 2 E n E

0

to F without loosing 2-level planarity. Hence, a

e

= 0 for all edges in E n E

0

, and

the theorem is shown.

In the next section we show how the theoretical results obtained in this section can be used in an

algorithm for solving practical instances of the 2-level planarization problem.

4. Separation Problems and a Branch-and-Cut Algorithm

According to results of Gr�otschel, Lov�asz, Schrijver [GLS81], Karp and Papadimitriou [KP80],

and Padberg and Rao [PR81], we can optimize a linear objective function over a polytope in

polynomial time if and only if we can solve the separation problem in polynomial time, i.e., given a

vector �x 2 Q

jEj

, decide whether �x 2 P , and, if �x 62 P , �nd a vector d 2 Q

jEj

and a scalar d

0

2 Q

such that the inequality d

T

�x � d

0

is valid with respect to P and d

T

�x > d

0

.

We will see that we can solve the separation problem restricted to the class of inequalities (2) in

polynomial time.

Theorem 4.1 For the cycle inequalities (2) the separation problem can be solved in polynomial

time by computing at most jEj shortest path problems.

Proof. Given a point �x 2 Q

jEj

, we are searching for a cycle C � E with �x(C) > jCj � 1. Let us

write the inequality in a di�erent way: jCj � �x(C) < 1 which corresponds to

P

e2C

(1 � x

e

) < 1.

For any �xed e

0

2 E we solve a shortest path problem on the graph given by G � fe

0

g with edge

costs z

e

= 1� x

e

for e 2 E n fe

0

g. Let W be the weight of the shortest path. We only have to test

if W +z

e

0

is less than one. In this case we have found a cycle C violating inequality �x(C) > jCj�1

of �x. If for no e

0

2 E a violated inequality has been found, we have a proof that all the inequalities

of type (2) are satis�ed at �x. Hence we have solved the separation problem for (2) in polynomial

time.

The separation problem can also be solved for the double claw inequalities (3) and their general-

ization to k-double claw inequalities for �xed k.

Theorem 4.2 The separation problem for the double claw inequalities and the generalized k-

double claw inequalities can be solved in polynomial time for �xed k by computing a series of

maximum bipartite matching problems on subgraphs of G.

Proof. Obviously, all k-double claws for �xed k can simply be enumerated in polynomial time.

Faster is the following algorithm that is described for the generalized k-double claw inequalities when

k is �xed. Given a point �x 2 Q

jEj

, we are searching for a k-double claw T � E with �x(T ) > k+ 2.

For any vertex r and any set of k adjacent vertices w

1

; w

2

; : : : ; w

k

2 N(r) letW :=

P

k

i=1

x

(r;w

i

)

. We

compute a maximum bipartite matchingM between the vertex sets fw

1

; w

2

; : : : ; w

k

g and fN(w

1

)[

N(w

2

) � � �[N(w

k

)gnfr; w

1

; w

2

; : : : ; w

k

g. IfW +

P

e2M

x

e

� k+2, then no k-double claw inequality

rooted at r with neighbours w

1

; w

2

; : : : ; w

k

is violated. Otherwise, M together with f(r; w

i

) j i =

1; 2; : : : ; kg induces a set T for which the inequality x(T ) � k+2 is violated (T may be only a part

of a k-double claw in case that M contains less than k edges).

Padberg and Wolsey have already shown that the separation problem for the inequalities occuring

in the weighted forest polytope can be solved in polynomial time [PW83].
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Theorem 4.3 [PW83]. The separation problem of the forest inequalities (8) can be solved by

computing a minimum cut in a capacitated network G

�

constructed from G = (V;E). G

�

contains

2(jV j+ jEj) arcs and jV j+ 2 vertices.

We suggest a branch-and-cut algorithm for solving practical instances of the maximum 2-level

planar subgraph problem. We will see that our branch-and-cut algorithm is able to �nd nearly

optimal solutions for moderately sized problem instances in reasonable computation time.

We implemented a branch-and-cut algorithm based on the system ABACUS [JRT97,Thi95] us-

ing the separation routines mentioned above. In our algorithm we start with the linear system

fmaxw

T

�x j x

e

� 0; x

e

� 1 for all e 2 Eg. Let x

�

denote the optimal solution of the LP-system.

We solve the separation problem for inequalities (2), (3), (5) and (8) using Theorems 4.1-4.3. We

add all the found inequalities to our system and optimize again. The algorithm stops if no vio-

lated inequalities of the above mentioned types are found. If x

�

is integer, we know that x

�

is the

incidence vector of a 2-level planar graph. In this case we have found the optimal solution of the

2-level planarization problem. Otherwise, x

�

gives us an upper bound to the value of a maximum

2-level planar subgraph of the given instance G. In this case, we branch by setting the value of a

fractional variable to zero or one, and try to solve the subproblems like the root node.

In addition, we try to �nd good solutions to the problem. After each optimization process, we may

get new solutions x

�

to the problem, most of which are fractional. Fractional solutions x

�

may give

us a hint about good solutions to the problem. We try to use this information in our heuristics

that we apply in each iteration.

5. Computational Results

For our experiments we used the branch-and-cut algorithm described above. The algorithm stops

if either the optimal solution is found or no violated cycle, double claw, generalized double claw or

forest inequality can be detected. Moreover, we put a time limit of �ve minutes (=300 seconds)

to our program. In any case, the program gives a 2-level planar subgraph together with an upper

bound of the optimal solution.

Table 1. Computational Results for graphs on 20 vertices per level

jV

i

j jEj Gar Time Cycles 2Claw kClaw Forest

20 20 0.00 0.01 0.18 0.52 0.00 0.00

20 25 0.00 0.03 0.81 1.65 0.15 0.00

20 30 0.00 0.17 2.36 4.60 0.87 0.05

20 35 0.00 0.52 5.04 16.08 4.52 0.16

20 40 0.00 5.81 11.39 55.69 22.20 1.09

20 45 0.03 25.56 19.38 116.73 92.80 3.93

20 50 0.67 100.38 32.62 185.72 234.21 9.13

20 55 0.53 81.17 25.14 194.21 297.81 8.11

20 60 0.37 56.04 23.69 167.63 277.66 5.78

20 65 0.32 54.25 23.22 188.07 320.39 5.66

20 70 0.13 25.97 18.47 103.06 159.25 1.79

20 75 0.13 21.69 18.33 76.45 139.69 0.92

20 80 0.03 12.37 17.01 61.09 67.38 0.11

20 85 0.10 20.28 18.16 75.91 111.53 0.34

20 90 0.02 7.47 13.46 29.05 34.66 0.09

20 95 0.00 3.94 11.66 15.81 16.77 0.12

20 100 0.00 4.08 10.83 13.90 15.72 0.02
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Fig. 8. Average running times

Table 1 shows computational results for 100 instances of 2-level graphs with 20 vertices at each

level with increasing density. The columns show the number of vertices per level, the number of

edges, and the average guarantee of the solution value, i.e., if Sol denotes the number of edges

remaining in a found 2-level planar subgraph and UpBound denotes the value determined by the

linear programming relaxation, then the solution guarantee Gar is

�

UpBound�Sol

UpBound

�

�100%. Column

4 shows the time on a SUN Ultra 2/2x200 in seconds. Columns 5 to 8 show the average number of

found violated cycle, double claw, generalized k-double claw and forest inequalities.

The average quality of the solution value is visualized in Figure 7. The results are surprisingly

good. On the average, the solution we found is very close (below 0:7% on average) to the optimal

one. Figure 8 shows the average running time in seconds.

Furthermore, we ran 100 instances on a series of sparse graphs. The results are promising also for

these cases (see Table 2). Our solution is at most 5% away from the optimal solution. Figure 7

and Figure 8 visualize the average guarantee of the solution and the running times also for sparse

graphs. Practical instances in graph drawing typically have up to 40 vertices per layer. Hence,

regarding the running times, our algorithm is competitive with the classical heuristics used for

crossing minimization in graph drawing.

Table 2. Computational Results for sparse graphs

jV

i

j jEj Gar Time Cycles 2Claw kClaw Forest

20 40 0.00 5.97 11.39 55.69 22.20 1.09

30 60 0.13 49.41 15.17 136.79 83.24 2.25

40 80 0.55 149.85 17.46 227.30 137.60 2.99

50 100 1.45 252.81 20.26 309.59 178.53 3.51

60 120 1.86 279.38 22.63 395.82 230.21 1.81

70 140 2.35 293.73 25.65 441.42 222.76 1.64

80 160 2.90 300.37 28.68 534.30 248.17 1.02

90 180 3.48 300.97 31.18 589.81 241.98 0.33

100 200 4.67 300.39 35.26 687.14 237.27 0.31

Consider the graph shown in Figure 2. Our branch-and-cut algorithm solved the 2-level planariza-

13



tion problem for the given instance provably optimal within 0.01 seconds. During the run 5 violated

cycle constraints were found, 10 double claw inequalities, 1 generalized k-double claw inequalities

and no forest inequality.
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