137 research outputs found

    A Study of Dynamic Pile-Soil Interaction

    Get PDF
    The paper discusses briefly the state of art on the subject of pile dynamics including consideration of soil-pile interaction. An analytical model which gives the response of a single pile buried in a layered soil medium considering variation in soil properties in the radial direction in each layer is illustrated. The paper also presents an experimental study on a full size test pile 40 cm dia and 7 m long driven into a five layered soil stratum. The results of the analytical and experimental studies are compared and suggestions for further work are given

    Anti-tumor activity mediated by protein and peptide transduction of HIV viral protein R (Vpr)

    Get PDF
    Peptides that are capable of traversing the cell membrane, via protein transduction domains (PTDs), are attractive either directly as drugs or indirectly as carriers for the delivery of therapeutic molecules. One such PTD, a HIV-1 Tat derived peptide has successfully delivered a variety of "cargoes" including proteins, peptides and nucleic acids into cells. There also exists other naturally occurring membrane permeable peptides which have potential as PTDs. Specifically, one of the accessory proteins of HIV (viral protein R; i.e., Vpr), which is important in controlling viral pathogenesis, possesses cell transduction domain characteristics. Related to these characteristics, Vpr has also been demonstrated to induce cell cycle arrest and host/target cell apoptosis, suggesting a potential anticancer activity for this protein. In this report we assessed the ability of Vpr protein or peptides, with or without conjugation to a PTD, to mediate anti-cancer activity against several tumor cell lines. Specifically, several Vpr peptides spanning carboxy amino acids 65-83 induced significant (i.e., greater than 50%) in vitro growth inhibition/toxicity of murine B16.F10 melanoma cells. Likewise, in in vitro experiments with other tumor cell lines, conjugation of Vpr to the Tat derived PTD and transfection of this construct into cells enhanced the induction of in vitro apoptosis by this protein when compared to the effects of transfection of cells with unconjugated Vpr. These results underscore the potential for Vpr based reagents as well as PTDs to enhance anti-tumor activity, and warrants further examination of Vpr protein and derived peptides as potential therapeutic agents against progressive cell proliferative diseases such as cancer. ©2009 Landes Bioscience

    HIV-1 Vpr Triggers Mitochondrial Destruction by Impairing Mfn2-Mediated ER-Mitochondria Interaction

    Get PDF
    Human immunodeficiency virus 1 (HIV-1) viral protein R (Vpr) has been shown to induce host cell death by increasing the permeability of mitochondrial outer membrane (MOM). The mechanism underlying the damage to the mitochondria by Vpr, however, is not clearly illustrated. In this study, Vpr that is introduced, via transient transfection or lentivirus infection, into the human embryonic kidney cell line HEK293, human CD4+ T lymphoblast cell line SupT1, or human primary CD4+ T cells serves as the model system to study the molecular mechanism of Vpr-mediated HIV-1 pathogenesis. The results show that Vpr injures MOM and causes a loss in membrane potential (MMP) by posttranscriptionally reducing the expression of mitofusin 2 (Mfn2) via VprBP-DDB1-CUL4A ubiquitin ligase complex, gradually weakening MOM, and increasing mitochondrial deformation. Vpr also markedly decreases cytoplasmic levels of dynamin-related protein 1 (DRP1) and increases bulging in mitochondria-associated membranes (MAM), the specific regions of endoplasmic reticulum (ER) which form physical contacts with the mitochondria. Overexpression of Mfn2 and DRP1 significantly decreased the loss of MMP and apoptotic cell death caused by Vpr. Furthermore, by employing time-lapse confocal fluorescence microscopy, we identify the transport of Vpr protein from the ER, via MAM to the mitochondria. Taken together, our results suggest that Vpr-mediated cellular damage may occur on an alternative protein transport pathway from the ER, via MAM to the mitochondria, which are modulated by Mfn2 and DRP1

    Induction of Inflammation by West Nile virus Capsid through the Caspase-9 Apoptotic Pathway

    Get PDF
    West Nile virus (WNV) is a member of the Flaviviridae family of vector-borne pathogens. Clinical signs of WNV infection include neurologic symptoms, limb weakness, and encephalitis, which can result in paralysis or death. We report that the WNV-capsid (Cp) by itself induces rapid nuclear condensation and cell death in tissue culture. Apoptosis is induced through the mitochondrial pathway resulting in caspase-9 activation and downstream caspase-3 activation. Capsid gene delivery into the striatum of mouse brain or interskeletal muscle resulted in cell death and inflammation, likely through capsid-induced apoptosis in vivo. These studies demonstrate that the capsid protein of WNV may be responsible for aspects of viral pathogenesis through induction of the apoptotic cascade

    Chikungunya Virus Infection

    Get PDF
    Chikungunya virus (CHIKV) is an alphavirus transmitted by mosquitoes, mostly Aedes aegypti and Aedes albopictus. After half a century of focal outbreaks of acute febrile polyarthralgia in Africa and Asia, the disease unexpectedly spread in the past decade with large outbreaks in Africa and around the Indian Ocean and rare autochthonous transmission in temperate areas. This emergence brought new insights on its pathogenesis, notably the role of the A226V mutation that improved CHIKV fitness in Ae. albopictus and the possible CHIKV persistence in deep tissue sanctuaries for months after infection. Massive outbreaks also revealed new aspects of the acute stage: the high number of symptomatic cases, unexpected complications, mother-to-child transmission, and low lethality in debilitated patients. The follow-up of patients in epidemic areas has identified frequent, long-lasting, rheumatic disorders, including rare inflammatory joint destruction, and common chronic mood changes associated with quality-of-life impairment. Thus, the globalization of CHIKV exposes countries with Aedes mosquitoes both to brutal outbreaks of acute incapacitating episodes and endemic long-lasting disorders

    Renal HIV Expression Is Unaffected by Serum LPS Levels in an HIV Transgenic Mouse Model of LPS Induced Kidney Injury

    Get PDF
    Acute kidney injury (AKI) is associated with increased rates of mortality. For unknown reasons, HIV infected individuals have a higher risk of AKI than uninfected persons. We tested our hypothesis that increased circulating LPS increases renal expression of HIV and that HIV transgenic (Tg26) mice have increased susceptibility to AKI. Tg26 mice harbor an HIV transgene encoding all HIV genes except gag and pol, and develop a phenotype analogous to HIVAN. Mice were used at 4–6 weeks of age before the onset of gross renal disease. Mice were injected i.p. with LPS or sterile saline. Renal function, tubular injury, cytokine expression, and HIV transcription were evaluated in Tg26 and wild type (WT) mice. LPS injection induced a median 60.1-fold increase in HIV expression in spleen but no change in kidney. There was no significant difference in renal function, cytokine expression, or tubular injury scores at baseline or 24 hours after LPS injection. HIV transcription was also analyzed in vitro using a human renal tubular epithelial cell (RTEC) line. HIV transcription increased minimally in human RTEC, by 1.47 fold, 48 hours after LPS exposure. We conclude that Tg26 mice do not increase HIV expression or have increased susceptibility to LPS induced AKI. The increased risk of AKI in HIV infected patients is not mediated via increased renal expression of HIV in the setting of sepsis. Moreover, renal regulation of HIV transcription is different to that in the spleen

    Novel HIV-1 Knockdown Targets Identified by an Enriched Kinases/Phosphatases shRNA Library Using a Long-Term Iterative Screen in Jurkat T-Cells

    Get PDF
    HIV-1 is a complex retrovirus that uses host machinery to promote its replication. Understanding cellular proteins involved in the multistep process of HIV-1 infection may result in the discovery of more adapted and effective therapeutic targets. Kinases and phosphatases are a druggable class of proteins critically involved in regulation of signal pathways of eukaryotic cells. Here, we focused on the discovery of kinases and phosphatases that are essential for HIV-1 replication but dispensable for cell viability. We performed an iterative screen in Jurkat T-cells with a short-hairpin-RNA (shRNA) library highly enriched for human kinases and phosphatases. We identified 14 new proteins essential for HIV-1 replication that do not affect cell viability. These proteins are described to be involved in MAPK, JNK and ERK pathways, vesicular traffic and DNA repair. Moreover, we show that the proteins under study are important in an early step of HIV-1 infection before viral integration, whereas some of them affect viral transcription/translation. This study brings new insights for the complex interplay of HIV-1/host cell and opens new possibilities for antiviral strategies

    Control of Mitochondrial Membrane Permeabilization by Adenine Nucleotide Translocator Interacting with HIV-1 Viral Protein R and Bcl-2

    Get PDF
    Viral protein R (Vpr), an apoptogenic accessory protein encoded by HIV-1, induces mitochondrial membrane permeabilization (MMP) via a specific interaction with the permeability transition pore complex, which comprises the voltage-dependent anion channel (VDAC) in the outer membrane (OM) and the adenine nucleotide translocator (ANT) in the inner membrane. Here, we demonstrate that a synthetic Vpr-derived peptide (Vpr52-96) specifically binds to the intermembrane face of the ANT with an affinity in the nanomolar range. Taking advantage of this specific interaction, we determined the role of ANT in the control of MMP. In planar lipid bilayers, Vpr52-96 and purified ANT cooperatively form large conductance channels. This cooperative channel formation relies on a direct protein–protein interaction since it is abolished by the addition of a peptide corresponding to the Vpr binding site of ANT. When added to isolated mitochondria, Vpr52-96 uncouples the respiratory chain and induces a rapid inner MMP to protons and NADH. This inner MMP precedes outer MMP to cytochrome c. Vpr52-96–induced matrix swelling and inner MMP both are prevented by preincubation of purified mitochondria with recombinant Bcl-2 protein. In contrast to König's polyanion (PA10), a specific inhibitor of the VDAC, Bcl-2 fails to prevent Vpr52-96 from crossing the mitochondrial OM. Rather, Bcl-2 reduces the ANT–Vpr interaction, as determined by affinity purification and plasmon resonance studies. Concomitantly, Bcl-2 suppresses channel formation by the ANT–Vpr complex in synthetic membranes. In conclusion, both Vpr and Bcl-2 modulate MMP through a direct interaction with ANT

    Single amino acid change in gp41 region of HIV-1 alters bystander apoptosis and CD4 decline in humanized mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mechanism by which HIV infection leads to a selective depletion of CD4 cells leading to immunodeficiency remains highly debated. Whether the loss of CD4 cells is a direct consequence of virus infection or bystander apoptosis of uninfected cells is also uncertain.</p> <p>Results</p> <p>We have addressed this issue in the humanized mouse model of HIV infection using a HIV variant with a point mutation in the gp41 region of the Env glycoprotein that alters its fusogenic activity. We demonstrate here that a single amino acid change (V38E) altering the cell-to-cell fusion activity of the Env minimizes CD4 loss in humanized mice without altering viral replication. This differential pathogenesis was associated with a lack of bystander apoptosis induction by V38E virus even in the presence of similar levels of infected cells. Interestingly, immune activation was observed with both WT and V38E infection suggesting that the two phenomena are likely not interdependent in the mouse model.</p> <p>Conclusions</p> <p>We conclude that Env fusion activity is one of the determinants of HIV pathogenesis and it may be possible to attenuate HIV by targeting gp41.</p

    Mutation of the Zebrafish Nucleoporin elys Sensitizes Tissue Progenitors to Replication Stress

    Get PDF
    The recessive lethal mutation flotte lotte (flo) disrupts development of the zebrafish digestive system and other tissues. We show that flo encodes the ortholog of Mel-28/Elys, a highly conserved gene that has been shown to be required for nuclear integrity in worms and nuclear pore complex (NPC) assembly in amphibian and mammalian cells. Maternal elys expression sustains zebrafish flo mutants to larval stages when cells in proliferative tissues that lack nuclear pores undergo cell cycle arrest and apoptosis. p53 mutation rescues apoptosis in the flo retina and optic tectum, but not in the intestine, where the checkpoint kinase Chk2 is activated. Chk2 inhibition and replication stress induced by DNA synthesis inhibitors were lethal to flo larvae. By contrast, flo mutants were not sensitized to agents that cause DNA double strand breaks, thus showing that loss of Elys disrupts responses to selected replication inhibitors. Elys binds Mcm2-7 complexes derived from Xenopus egg extracts. Mutation of elys reduced chromatin binding of Mcm2, but not binding of Mcm3 or Mcm4 in the flo intestine. These in vivo data indicate a role for Elys in Mcm2-chromatin interactions. Furthermore, they support a recently proposed model in which replication origins licensed by excess Mcm2-7 are required for the survival of human cells exposed to replication stress
    corecore