30 research outputs found

    Linking social complexity and vocal complexity: a parid perspective

    Get PDF
    The Paridae family (chickadees, tits and titmice) is an interesting avian group in that species vary in important aspects of their social structure and many species have large and complex vocal repertoires. For this reason, parids represent an important set of species for testing the social complexity hypothesis for vocal communicationā€”the notion that as groups increase in social complexity, there is a need for increased vocal complexity. Here, we describe the hypothesis and some of the early evidence that supported the hypothesis. Next, we review literature on social complexity and on vocal complexity in parids, and describe some of the studies that have made explicit tests of the social complexity hypothesis in one paridā€”Carolina chickadees, Poecile carolinensis. We conclude with a discussion, primarily from a parid perspective, of the benefits and costs of grouping and of physiological factors that might mediate the relationship between social complexity and changes in signalling behaviour

    Differential impact of LPG-and PG-deficient Leishmania major mutants on the immune response of human dendritic cells

    Get PDF
    <div><p>Background</p><p><i>Leishmania major</i> infection induces robust interleukin-12 (IL12) production in human dendritic cells (hDC), ultimately resulting in Th1-mediated immunity and clinical resolution. The surface of <i>Leishmania</i> parasites is covered in a dense glycocalyx consisting of primarily lipophosphoglycan (LPG) and other phosphoglycan-containing molecules (PGs), making these glycoconjugates the likely pathogen-associated molecular patterns (PAMPS) responsible for IL12 induction.</p><p>Methodology/Principal Findings</p><p>Here we explored the role of parasite glycoconjugates on the hDC IL12 response by generating <i>L</i>. <i>major</i> Friedlin V1 mutants defective in LPG alone, (FV1 <i>lpg1-</i>), or generally deficient for all PGs, (FV1 <i>lpg2-</i>). Infection with metacyclic, infective stage, <i>L</i>. <i>major</i> or purified LPG induced high levels of <i>IL12B</i> subunit gene transcripts in hDCs, which was abrogated with FV1 <i>lpg1-</i> infections. In contrast, hDC infections with FV1 <i>lpg2-</i> displayed increased <i>IL12B</i> expression, suggesting other PG-related/<i>LPG2</i> dependent molecules may act to dampen the immune response. Global transcriptional profiling comparing WT, FV1 <i>lpg1-</i>, FV1 <i>lpg2-</i> infections revealed that FV1 <i>lpg1-</i> mutants entered hDCs in a silent fashion as indicated by repression of gene expression. Transcription factor binding site analysis suggests that LPG recognition by hDCs induces IL-12 in a signaling cascade resulting in Nuclear Factor Īŗ B (NFĪŗB) and Interferon Regulatory Factor (IRF) mediated transcription.</p><p>Conclusions/Significance</p><p>These data suggest that <i>L</i>. <i>major</i> LPG is a major PAMP recognized by hDC to induce IL12-mediated protective immunity and that there is a complex interplay between PG-baring <i>Leishmania</i> surface glycoconjugates that result in modulation of host cellular IL12.</p></div

    Steady-state modeling of current loss in a post-hole convolute driven by high power magnetically insulated transmission lines

    No full text
    Quasiequilibrium power flow in two radial magnetically insulated transmission lines (MITLs) coupled to a vacuum post-hole convolute is studied at 50ā€‰ā€‰TWā€“200ā€‰ā€‰TW using three-dimensional particle-in-cell simulations. The key physical dimensions in the model are based on the ZR accelerator [D.ā€‰H. McDaniel, etĀ al., Proceedings of 5th International Conference on Dense Z-Pinches, edited by J. Davis (AIP, New York, 2002), p.Ā 23]. The voltages assumed for this study result in electron emission from all cathode surfaces. Electrons emitted from the MITL cathodes upstream of the convolute cause a portion of the MITL current to be carried by an electron sheath. Under the simplifying assumptions made by the simulations, it is found that the transition from the two MITLs to the convolute results in the loss of most of the sheath current to anode structures. The loss is quantified as a function of radius and correlated with Poynting vector stream lines which would be followed by individual electrons. For a fixed MITL-convolute geometry, the current loss, defined to be the difference between the total (i.e. anode) current in the system upstream of the convolute and the current delivered to the load, increases with both operating voltage and load impedance. It is also found that in the absence of ion emission, the convolute is efficient when the load impedance is much less than the impedance of the two parallel MITLs. The effects of space-charge-limited (SCL) ion emission from anode surfaces are considered for several specific cases. Ion emission from anode surfaces in the convolute is found to increase the current loss by a factor of 2ā€“3. When SCL ion emission is allowed from anode surfaces in the MITLs upstream of the convolute, substantially higher current losses are obtained. Note that the results reported here are valid given the spatial resolution used for the simulations
    corecore