195 research outputs found
On the emergence of a proto-metabolism and the assembly of early protocells
Protocells are envisaged as encapsulated networks of catalytic polymers, e.g., RNAs, which are thought to have existed on the prebiotic Earth, as precursors to contemporary biological cells. Such protocells were not alive in the way this word would apply to a contemporary unicellular organism, but instead represented a necessary evolutionary step toward those first forms of cellular life. In this review, we explore how chemicals synthesized by minerals or delivered by meteorites could have contributed to the emergence of the first protocells and supported their evolution towards primitive cellular life
Phonon Mode Spectroscopy, Electron-Phonon Coupling and the Metal-Insulator Transition in Quasi-One-Dimensional M2Mo6Se6
We present electronic structure calculations, electrical resistivity data and
the first specific heat measurements in the normal and superconducting states
of quasi-one-dimensional M2Mo6Se6 (M = Tl, In, Rb). Rb2Mo6Se6 undergoes a
metal-insulator transition at ~170K: electronic structure calculations indicate
that this is likely to be driven by the formation of a dynamical charge density
wave. However, Tl2Mo6Se6 and In2Mo6Se6 remain metallic down to low temperature,
with superconducting transitions at Tc = 4.2K and 2.85K respectively. The
absence of any metal-insulator transition in these materials is due to a larger
in-plane bandwidth, leading to increased inter-chain hopping which suppresses
the density wave instability. Electronic heat capacity data for the
superconducting compounds reveal an exceptionally low density of states DEF =
0.055 states eV^-1 atom^-1, with BCS fits showing 2Delta/kBTc >= 5 for
Tl2Mo6Se6 and 3.5 for In2Mo6Se6. Modelling the lattice specific heat with a set
of Einstein modes, we obtain the approximate phonon density of states F(w).
Deconvolving the resistivity for the two superconductors then yields their
electron-phonon transport coupling function a^2F(w). In Tl2Mo6Se6 and
In2Mo6Se6, F(w) is dominated by an optical "guest ion" mode at ~5meV and a set
of acoustic modes from ~10-30meV. Rb2Mo6Se6 exhibits a similar spectrum;
however, the optical phonon has a lower intensity and is shifted to ~8meV.
Electrons in Tl2Mo6Se6 couple strongly to both sets of modes, whereas In2Mo6Se6
only displays significant coupling in the 10-18meV range. Although pairing is
clearly not mediated by the guest ion phonon, we believe it has a beneficial
effect on superconductivity in Tl2Mo6Se6, given its extraordinarily large
coupling strength and higher Tc compared to In2Mo6Se6.Comment: 16 pages, 13 figure
Toward homochiral protocells in noncatalytic peptide systems
The activation-polymerization-epimerization-depolymerization (APED) model of
Plasson et al. has recently been proposed as a mechanism for the evolution of
homochirality on prebiotic Earth. The dynamics of the APED model in
two-dimensional spatially-extended systems is investigated for various
realistic reaction parameters. It is found that the APED system allows for the
formation of isolated homochiral proto-domains surrounded by a racemate. A
diffusive slowdown of the APED network such as induced through tidal motion or
evaporating pools and lagoons leads to the stabilization of homochiral bounded
structures as expected in the first self-assembled protocells.Comment: 10 pages, 5 figure
- …
