178 research outputs found

    Role of the Bloom's syndrome helicase in maintenance of genome stability.

    Get PDF
    The RecQ family of DNA helicases has members in all organisms analysed. In humans, defects in three family members are associated with disease conditions: BLM is defective in Bloom's syndrome, WRN in Werner's syndrome and RTS in Rothmund-Thomson syndrome. In each case, cells from affected individuals show inherent genomic instability. The focus of our work is the Bloom's syndrome gene and its product, BLM. Here, we review the latest information concerning the roles of BLM in the maintenance of genome integrity

    BLM and RMI1 alleviate RPA inhibition of topoIIIα decatenase activity

    Get PDF
    RPA is a single-stranded DNA binding protein that physically associates with the BLM complex. RPA stimulates BLM helicase activity as well as the double Holliday junction dissolution activity of the BLM-topoisomerase IIIα complex. We investigated the effect of RPA on the ssDNA decatenase activity of topoisomerase IIIα. We found that RPA and other ssDNA binding proteins inhibit decatenation by topoisomerase IIIα. Complex formation between BLM, TopoIIIα, and RMI1 ablates inhibition of decatenation by ssDNA binding proteins. Together, these data indicate that inhibition by RPA does not involve species-specific interactions between RPA and BLM-TopoIIIα-RMI1, which contrasts with RPA modulation of double Holliday junction dissolution. We propose that topoisomerase IIIα and RPA compete to bind to single-stranded regions of catenanes. Interactions with BLM and RMI1 enhance toposiomerase IIIα activity, promoting decatenation in the presence of RPA

    Dicentracin-Like from Asian sea bass Fish and Moronecidine-Like from Hippocampus Comes: Two Candidate Antimicrobial Peptides Against Leishmanina major Infection

    Get PDF
    Anti-Leishmanial drug therapy faces significant challenges related to cytotoxicity and drug resistance. Thus, new and efficient anti-Leishmanial drugs need to be identified. Due to their broad-spectrum antimicrobial and also immunomodulatory activities, antimicrobial peptides (AMPs) have attracted considerable attention. In this study, we comparatively assessed the anti-Leishmanial activities of two recently identified AMPs (dicentracin-like and moronecidine-like) and the well-known AMP piscidin from the hybrid striped bass. AMPs were first assessed against Leishmania major promastigotes using MTS. Subsequently, macrophages were infected with L. major and treated with AMPs to evaluate anti-amastigotes activity of AMPs, and non-infected macrophages were treated with AMPs to determine cytotoxicity against mammalian cells using MTS. The induction of factors limiting L. major growth (IL-12, TNF-α and reactive oxygen species (ROS)) by AMPs was measured by ELISA and dichlorofluorescin-diacetate (DCFH-DA) assay, respectively. Piscidin was more efficacious against L. major promastigotes as compared to dicentracine-like or moronocidin-like peptides, whereas, dicentracine-like and moronocidin-like peptide exhibited a higher activity against L. major amastigotes compared to piscidin. In turn, piscidin was most cytotoxic in non-infected macrophages compared to the other two AMPs. A direct association was observed between hydrophobicity of AMPs and their anti-promastigote and cytotoxic activities. Dicentracine-like or moronocidin-like peptides induced higher levels of IL-12, TNF-α and ROS in macrophages compared to piscidin. Collectively, our results suggest that dicentracine-like and moronocidin-like peptides represent potentially promising multi-functional therapeutic agents that might not only directly kill L. major but also induce anti-Leishmania factors that can limit L. major growth and intracellular survival

    Opsoclonus-myoclonus syndrome, a post-infectious neurologic complication of COVID-19: case series and review of literature

    Get PDF
    Opsoclonus-myoclonus-ataxia syndrome is a heterogeneous constellation of symptoms ranging from full combination of these three neurological findings to varying degrees of isolated individual sign. Since the emergence of coronavirus disease 2019 (COVID-19), neurological symptoms, syndromes, and complications associated with this multi-organ viral infection have been reported and the various aspects of neurological involvement are increasingly uncovered. As a neuro-inflammatory disorder, one would expect to observe opsoclonus-myoclonus syndrome after a prevalent viral infection in a pandemic scale, as it has been the case for many other neuro-inflammatory syndromes. We report seven cases of opsoclonus-myoclonus syndrome presumably parainfectious in nature and discuss their phenomenology, their possible pathophysiological relationship to COVID-19, and diagnostic and treatment strategy in each case. Finally, we review the relevant data in the literature regarding the opsoclonus-myoclonus syndrome and possible similar cases associated with COVID-19 and its diagnostic importance for clinicians in various fields of medicine encountering COVID-19 patients and its complications. © 2021, Journal of NeuroVirology, Inc

    Collaboration of Werner syndrome protein and BRCA1 in cellular responses to DNA interstrand cross-links

    Get PDF
    Cells deficient in the Werner syndrome protein (WRN) or BRCA1 are hypersensitive to DNA interstrand cross-links (ICLs), whose repair requires nucleotide excision repair (NER) and homologous recombination (HR). However, the roles of WRN and BRCA1 in the repair of DNA ICLs are not understood and the molecular mechanisms of ICL repair at the processing stage have not yet been established. This study demonstrates that WRN helicase activity, but not exonuclease activity, is required to process DNA ICLs in cells and that WRN cooperates with BRCA1 in the cellular response to DNA ICLs. BRCA1 interacts directly with WRN and stimulates WRN helicase and exonuclease activities in vitro. The interaction between WRN and BRCA1 increases in cells treated with DNA cross-linking agents. WRN binding to BRCA1 was mapped to BRCA1 452–1079 amino acids. The BRCA1/BARD1 complex also associates with WRN in vivo and stimulates WRN helicase activity on forked and Holliday junction substrates. These findings suggest that WRN and BRCA1 act in a coordinated manner to facilitate repair of DNA ICLs

    The Werner Syndrome Helicase/Exonuclease Processes Mobile D-Loops through Branch Migration and Degradation

    Get PDF
    RecQ DNA helicases are critical for preserving genome integrity. Of the five RecQ family members identified in humans, only the Werner syndrome protein (WRN) possesses exonuclease activity. Loss of WRN causes the progeroid disorder Werner syndrome which is marked by cancer predisposition. Cellular evidence indicates that WRN disrupts potentially deleterious intermediates in homologous recombination (HR) that arise in genomic and telomeric regions during DNA replication and repair. Precisely how the WRN biochemical activities process these structures is unknown, especially since the DNA unwinding activity is poorly processive. We generated biologically relevant mobile D-loops which mimic the initial DNA strand invasion step in HR to investigate whether WRN biochemical activities can disrupt this joint molecule. We show that WRN helicase alone can promote branch migration through an 84 base pair duplex region to completely displace the invading strand from the D-loop. However, substrate processing is altered in the presence of the WRN exonuclease activity which degrades the invading strand both prior to and after release from the D-loop. Furthermore, telomeric D-loops are more refractory to disruption by WRN, which has implications for tighter regulation of D-loop processing at telomeres. Finally, we show that WRN can recognize and initiate branch migration from both the 5′ and 3′ ends of the invading strand in the D-loops. These findings led us to propose a novel model for WRN D-loop disruption. Our biochemical results offer an explanation for the cellular studies that indicate both WRN activities function in processing HR intermediates
    corecore