672 research outputs found
B Cells Regulate Neutrophilia during Mycobacterium tuberculosis Infection and BCG Vaccination by Modulating the Interleukin-17 Response
We have previously demonstrated that B cells can shape the immune response to Mycobacterium tuberculosis, including the level of neutrophil infiltration and granulomatous inflammation at the site of infection. The present study examined the mechanisms by which B cells regulate the host neutrophilic response upon exposure to mycobacteria and how neutrophilia may influence vaccine efficacy. To address these questions, a murine aerosol infection tuberculosis (TB) model and an intradermal (ID) ear BCG immunization mouse model, involving both the μMT strain and B cell-depleted C57BL/6 mice, were used. IL (interleukin)-17 neutralization and neutrophil depletion experiments using these systems provide evidence that B cells can regulate neutrophilia by modulating the IL-17 response during M. tuberculosis infection and BCG immunization. Exuberant neutrophilia at the site of immunization in B cell-deficient mice adversely affects dendritic cell (DC) migration to the draining lymph nodes and attenuates the development of the vaccine-induced Th1 response. The results suggest that B cells are required for the development of optimal protective anti-TB immunity upon BCG vaccination by regulating the IL-17/neutrophilic response. Administration of sera derived from M. tuberculosis-infected C57BL/6 wild-type mice reverses the lung neutrophilia phenotype in tuberculous μMT mice. Together, these observations provide insight into the mechanisms by which B cells and humoral immunity modulate vaccine-induced Th1 response and regulate neutrophila during M. tuberculosis infection and BCG immunization. © 2013 Kozakiewicz et al
Role of Interleukin 17 in arthritis chronicity through survival of synoviocytes via regulation of synoviolin expression
Background:
The use of TNF inhibitors has been a major progress in the treatment of chronic inflammation. However, not all patients respond. In addition, response will be often lost when treatment is stopped. These clinical aspects indicate that other cytokines might be involved and we focus here on the role of IL-17. In addition, the chronic nature of joint inflammation may contribute to reduced response and enhanced chronicity. Therefore we studied the capacity of IL-17 to regulate synoviolin, an E3 ubiquitin ligase implicated in synovial hyperplasia in human rheumatoid arthritis (RA) FLS and in chronic reactivated streptococcal cell wall (SCW)-induced arthritis.<p></p>
Methodology/Principal Findings:
Chronic reactivated SCW-induced arthritis was examined in IL-17R deficient and wild-type mice. Synoviolin expression was analysed by real-time RT-PCR, Western Blot or immunostaining in RA FLS and tissue, and p53 assessed by Western Blot. Apoptosis was detected by annexin V/propidium iodide staining, SS DNA apoptosis ELISA kit or TUNEL staining and proliferation by PCNA staining. IL-17 receptor A (IL-17RA), IL-17 receptor C (IL-17-RC) or synoviolin inhibition were achieved by small interfering RNA (siRNA) or neutralizing antibodies. IL-17 induced sustained synoviolin expression in RA FLS. Sodium nitroprusside (SNP)-induced RA FLS apoptosis was associated with reduced synoviolin expression and was rescued by IL-17 treatment with a corresponding increase in synoviolin expression. IL-17RC or IL-17RA RNA interference increased SNP-induced apoptosis, and decreased IL-17-induced synoviolin. IL-17 rescued RA FLS from apoptosis induced by synoviolin knockdown. IL-17 and TNF had additive effects on synoviolin expression and protection against apoptosis induced by synoviolin knowndown. In IL-17R deficient mice, a decrease in arthritis severity was characterized by increased synovial apoptosis, reduced proliferation and a marked reduction in synoviolin expression. A distinct absence of synoviolin expressing germinal centres in IL-17R deficient mice contrasted with synoviolin positive B cells and Th17 cells in synovial germinal centre-like structures.<p></p>
Conclusion/Significance:
IL-17 induction of synoviolin may contribute at least in part to RA chronicity by prolonging the survival of RA FLS and immune cells in germinal centre reactions. These results extend the role of IL-17 to synovial hyperplasia.<p></p>
- …
