1,191 research outputs found

    3D freeform surfaces from planar sketches using neural networks

    Get PDF
    A novel intelligent approach into 3D freeform surface reconstruction from planar sketches is proposed. A multilayer perceptron (MLP) neural network is employed to induce 3D freeform surfaces from planar freehand curves. Planar curves were used to represent the boundaries of a freeform surface patch. The curves were varied iteratively and sampled to produce training data to train and test the neural network. The obtained results demonstrate that the network successfully learned the inverse-projection map and correctly inferred the respective surfaces from fresh curves

    Complex genital system of a haplogyne spider (Arachnida, Araneae, Tetrablemmidae) indicates internal fertilization and full female control over transferred sperm.

    Get PDF
    The female genital organs of the tetrablemmid Indicoblemma lannaianum are astonishingly complex. The copulatory orifice lies anterior to the opening of the uterus externus and leads into a narrow insertion duct that ends in a genital cavity. The genital cavity continues laterally in paired tube-like copulatory ducts, which lead into paired, large, sac-like receptacula. Each receptaculum has a sclerotized pore plate with associated gland cells. Paired small fertilization ducts originate in the receptacula and take their curved course inside the copulatory ducts. The fertilization ducts end in slit-like openings in the sclerotized posterior walls of the copulatory ducts. Huge masses of secretions forming large balls are detectable in the female receptacula. An important function of these secretory balls seems to be the encapsulation of spermatozoa in discrete packages in order to avoid the mixing of sperm from different males. In this way, sperm competition may be completely prevented or at least severely limited. Females seem to have full control over transferred sperm and be able to express preference for spermatozoa of certain males. The lumen of the sperm containing secretory balls is connected with the fertilization duct. Activated spermatozoa are only found in the uterus internus of females, which is an indication of internal fertilization. The sperm cells in the uterus internus are characterized by an extensive cytoplasm and an elongated, cone-shaped nucleus. The male genital system of I. lannaianum consists of thick testes and thin convoluted vasa deferentia that open into the wide ductus ejaculatorius. The voluminous globular palpal bulb is filled with seminal fluid consisting of a globular secretion in which only a few spermatozoa are embedded. The spermatozoa are encapsulated by a sheath produced in the genital system. The secretions in females may at least partly consist of male secretions that could be involved in the building of the secretory balls or play a role in sperm activation. The male secretions could also afford nutriments to the spermatozoa

    Resource-efficient dynamic partial reconfiguration on FPGAs for space instruments

    Get PDF
    Field-Programmable Gate Arrays (FPGAs) provide highly flexible platforms to implement sophisticated data processing for scientific space instruments. The dynamic partial reconfiguration (DPR) capability of FPGAs allows it to schedule HW tasks. While this feature adds another dimension of processing power that can be exploited without significantly increasing system complexity and power consumption, there are still several challenges for an efficient DPR use. State-of-the-art concepts concentrate either on resource-efficient implementations at design time or flexible HW task scheduling at runtime. In this paper we propose a balanced algorithm that considers both optimization goals and is well suited for resource-limited space applications

    Hardware and Software Task Scheduling for ARM-FPGA Platforms

    Get PDF
    ARM-FPGA coupled platforms allow accelerating the computation of specific algorithms by executing them in the FPGA fabric. Several computation steps of our case study for a stereo vision application have been accelerated by hardware implementations. Dynamic Partial Reconfiguration places these hardware tasks in the programmable logic at appropriate times. For an efficient scheduling, it needs to be decided when and where to execute a task. Although there already exist hardware/software scheduling strategies and algorithms, none exploit all possible optimization techniques: re-use, prefetching, parallelization, and pipelining of hardware tasks. The scheduling algorithm proposed in this paper takes this into account and optimizes for the objectives latency/throughput and power/energy

    Distribution of minor metallic elements within waste incineration bottom ashes defined by WDX/EDX spectrometry

    Get PDF
    A number of metallic elements are inherited from waste during thermal treatment and concentrated in the incineration residues. Because the major part of the incineration residue mass are bottom ashes (BAs), their study is of great importance from the point of view of their environmental impact or resource potential. The general focus of this study was on the minor metallic elements present in BAs. They co-occurred with main phases and often determined the inherited potential of the material. The analysed residues were produced from municipal and industrial waste. The BAs were studied using spectroscopic methods of chemical microanalysis: energy dispersive X-ray spectrometry (EDX) and wavelength dispersive X-ray spectrometry (WDX). Both the main and minor metallic elements were concentrated in metallic components. They were typically present as separate grains and metallic inclusions (commonly in the glass matrix of the grains) ranging in size from several to hundreds of micrometres. Despite Fe-, Al- and Cu-rich occurrences, metallic elements rarely occurred in fragments composed of a single element. Their main forms of occurrence were alloy grains, admixtures in polymetallic occurrences and micro-inclusions in glassy matrix. The content of particular elements in those forms was investigated and described in greater detail. Even though two types of bottom ash were formed from different types of waste and differences in used technologies were present, the obtained materials contained metallic components having similar attributes. Elevated concentrations of not only Fe and Al, but also Ti, Cu and Zn, allow us to consider bottom ash as a promising material from the point of view of metallic elements' recovery (e.g. by the physical concentration of elements through gravity or magnetic methods).</p

    A Comparative Analysis of the Morphology and Evolution of Permanent Sperm Depletion in Spiders

    Get PDF
    Once thought to be energetically cheap and easy to produce, empirical work has shown that sperm is a costly and limited resource for males. In some spider species, there is behavioral evidence that sperm are permanently depleted after a single mating. This extreme degree of mating investment appears to co-occur with other reproductive strategies common to spiders, e.g. genital mutilation and sexual cannibalism. Here we corroborate that sperm depletion in the golden orb-web spider Nephila clavipes is permanent by uncovering its mechanistic basis using light and electron microscopy. In addition, we use a phylogeny-based statistical analysis to test the evolutionary relationships between permanent sperm depletion (PSD) and other reproductive strategies in spiders. Male testes do not produce sperm during adulthood, which is unusual in spiders. Instead, spermatogenesis is nearly synchronous and ends before the maturation molt. Testis size decreases as males approach their maturation molt and reaches its lowest point after sperm is transferred into the male copulatory organs (pedipalps). As a consequence, the amount of sperm available to males for mating is limited to the sperm contained in the pedipalps, and once it is used, males lose their ability to fertilize eggs. Our data suggest that PSD has evolved independently at least three times within web-building spiders and is significantly correlated with the evolution of other mating strategies that limit males to monogamy, including genital mutilation and sexual cannibalism. We conclude that PSD may be an energy-saving adaptation in species where males are limited to monogamy. This could be particularly important in web-building spiders where extreme sexual size dimorphism results in large, sedentary females and small, searching males who rarely feed as adults and are vulnerable to starvation. Future work will explore possible energetic benefits and the evolutionary lability of PSD relative to other mate-limiting reproductive behaviors
    corecore